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Agenda

● Overview of distributed ML/DL

● Data preprocessing in distributed environment

● Model training in distributed environment

● Building pipelines

● Stacking, Boosting and online learning

● Some extra features



Distributed 
Machine learning 



2019 © GridGain Systems

Training on PBs with scikit-learn



2019 © GridGain Systems

Distributed ML with Apache Spark

• It supports classic ML algorithms

• Algorithms are distributed by nature

• Wide support of different data sources and sinks

• Easy building of Pipelines

• Model evaluation and hyper-parameter tuning support
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Distributed ML platforms
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Distributed ML with Apache Ignite

What is 

Apache 

Ignite?
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Distributed ML with Apache Ignite

Partition Data Dataset Context Dataset Data

Upstream Cache Context Cache On-Heap

Learning Env

On-Heap

Durable Stateless Durable Recoverable

double[][] x = …

double[] y = ...

double[][] x = …

double[] y = ...

Partition Based Dataset StructuresSource Data
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Data preprocessing
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Data preprocessing: Normalization
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Data preprocessing: Scaling
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Data preprocessing: One-Hot Encoder
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Data preprocessing: API

Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);

Preprocessor minMaxScalerPr = new MinMaxScalerTrainer()

.fit(ignite, dataCache, imputingPr);

Preprocessor normalizationPr = new NormalizationTrainer()

.withP(1)

.fit(ignite, dataCache, minMaxScalerPr);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, normalizationPr);

double accuracy = Evaluator.evaluate(dataCache, mdl, normalizationPr, new 

Accuracy<>());
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Model training
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Algorithms: Classification

● Logistic Regression
● SVM
● KNN
● ANN
● Decision trees
● Random Forest
● Naive Bayes

#UnifiedAnalytics #SparkAISummit
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Algorithms: Regression

• KNN Regression
• Linear Regression
• Decision tree regression
• Random forest 

regression
• Gradient-boosted tree 

regression

#UnifiedAnalytics #SparkAISummit
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Algorithms: Clusterization

• K-means

• GMM

#UnifiedAnalytics #SparkAISummit
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Multilayer Perceptron Neural Network

#UnifiedAnalytics #SparkAISummit
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Fill the cache

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers (ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);

double accuracy = Evaluator.evaluate(dataCache, mdl, vectorizer, new Accuracy<>());
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Build Labeled Vectors
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Define the trainer
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Train the model

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers (ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);
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Evaluate the model

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers (ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);

double accuracy = Evaluator.evaluate(dataCache, mdl, vectorizer, new Accuracy<>());
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Pipelines



2019 © GridGain Systems

ML Pipeline schema
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ML Pipelines with Apache Ignite

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers(ignite);

// Extracts "pclass", "sibsp", "parch", "sex", "embarked", "age", "fare".

Vectorizer<Integer, Vector, Integer, Double> vectorizer

= new DummyVectorizer<Integer>(0, 3, 4, 5, 6, 8, 10).labeled(1);

PipelineMdl<Integer, Vector> mdl =

new Pipeline<Integer, Vector, Integer, Double>()

.addVectorizer(vectorizer)

.addPreprocessingTrainer(new EncoderTrainer<Integer, Vector>()

.withEncoderType(EncoderType.STRING_ENCODER)

.withEncodedFeature(1)

.withEncodedFeature(6))

.addPreprocessingTrainer(new ImputerTrainer<Integer, Vector>())

.addPreprocessingTrainer(new MinMaxScalerTrainer<Integer, Vector>())

.addPreprocessingTrainer(new NormalizationTrainer<Integer, Vector>()

.withP(1))

.addTrainer(new DecisionTreeClassificationTrainer(5, 0))

.fit(ignite, dataCache);
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Beyond the limits of 
Apache Spark 
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Spark limits

• It doesn’t support model ensembles as stacking, boosting, bagging

• It doesn’t support online-learning for all algorithms

• A lot of data transformation/overhead from data source to ML types

• The hard integration with TensorFlow/Caffee

• A part of algorithms are using sparse matrix

• ML algorithms internally uses Mllib on RDD
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Bagging, Boosting and Stacking

DatasetTrainer<LogisticRegressionModel, Double> trainer =

new LogisticRegressionSGDTrainer(...)...;

BaggedTrainer<Double> baggedTrainer = TrainerTransformers.makeBagged(trainer,

// ensemble size, subsample ration, feature vector size, features subspace dim

7, 0.7, 2, 2,

new onMajorityPredictionsAggregator());
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Online learning

SVMLinearClassificationTrainer trainer = new SVMLinearClassificationTrainer();

SVMLinearClassificationModel mdl1 = trainer.fit(ignite, dataCache1, vectorizer);

SVMLinearClassificationModel mdl2 = trainer.update(mdl1, ignite, dataCache2, 

vectorizer);
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TensorFlow on Apache Ignite

• Ignite Dataset

• IGFS Plugin

• Distributed Training

• More info here

#UnifiedAnalytics #SparkAISummit

>>> import tensorflow as tf

>>> from tensorflow.contrib.ignite import IgniteDataset

>>>

>>> dataset = IgniteDataset(cache_name="SQL_PUBLIC_KITTEN_CACHE")

>>> iterator = dataset.make_one_shot_iterator()

>>> next_obj = iterator.get_next()

>>>

>>> with tf.Session() as sess:

>>> for _ in range(3):

>>> print(sess.run(next_obj))

{'key': 1, 'val': {'NAME': b'WARM KITTY'}}

{'key': 2, 'val': {'NAME': b'SOFT KITTY'}}

{'key': 3, 'val': {'NAME': b'LITTLE BALL OF FUR'}}

https://medium.com/tensorflow/tensorflow-on-apache-ignite-99f1fc60efeb
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Spark limits

• It doesn’t support model ensembles as stacking, boosting, bagging

• It doesn’t support online-learning for all algorithms

• The hard integration with TensorFlow

• A lot of data transformation/overhead from data source to ML types

• A part of algorithms use sparse matrix

• ML algorithms internally use Mllib on RDD
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Friendship is optimal
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IMDB with built-in ML

IgniteModelStorageUtil.saveModel(ignite, model, “titanik_model_tree”);

QueryCursor<List<?>> cursor = cache.query(new SqlFieldsQuery("select " +

"survived as truth, " +

"predict('titanik_model_tree', pclass, age, sibsp, parch, fare, case 

sex when 'male' then 1 else 0 end) as prediction " +

"from titanik_train"))

2019 © GridGain 

Systems
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Model import
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Inference in Ignite ML

2019 © GridGain 

Systems

Request queue

Response queue

Inference

Service

Inference

Service

Inference

Gateway
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Apache Ignite with GridGain ML Python API

GridGain ML client library provides user applications the ability to work 

with GridGain ML functionality using Py4J as an integration mechanism.

If you want to use ggml in your project, you may install it from PyPI:

$ pip install ggml
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Apache Ignite with GridGain ML Python API

GridGain ML client library provides user applications the ability to work 

with GridGain ML functionality using Py4J as an integration mechanism.

If you want to use ggml in your project, you may install it from PyPI:

$ pip install ggml

NB: available only for Apache Ignite master and for GG 8.7.6 (17 Jul)
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It could be your application
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Conclusions
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Conclusion

● Apache Ignite ready for building ML/DL systems

● You could use other systems for any part in your architecture

● You could use other systems with Apache Igntie and achieve extra abilities 

Apache Ignite
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Apache Ignite ML Tutorial

https://github.com/apache/ignite/

org.apache.ignite.examples.ml.tutorial

2019 © GridGain 

Systems

https://github.com/apache/ignite/
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Distributed Machine and Deep Learning at 
Scale with Apache Ignite

Links:

• http://ignite.apache.org/

• https://medium.com/tensorflow/tensorflow-on-apache-ignite-99f1fc60efeb

• https://github.com/gridgain/ml-python-api

Email: 

● user@ignite.apache.org

● dev@ignite.apache.org

● ybabak@gridgain.com

http://ignite.apache.org/
https://medium.com/tensorflow/tensorflow-on-apache-ignite-99f1fc60efeb
https://github.com/gridgain/ml-python-api
http://apache-ignite-users.70518.x6.nabble.com/
http://apache-ignite-developers.2346864.n4.nabble.com/
mailto:ybabak@gridgain.com

