Stacking, Boosting and Online Learning in distributed mode with Apache Ignite

Yuriy Babak
Agenda

- Overview of distributed ML/DL
- Data preprocessing in distributed environment
- Model training in distributed environment
- Building pipelines
- Stacking, Boosting and online learning
- Some extra features
Distributed Machine learning
Training on PBs with scikit-learn
Distributed ML with Apache Spark

- It supports classic ML algorithms
Distributed ML with Apache Spark

- It supports classic ML algorithms
- Algorithms are distributed by nature
Distributed ML with Apache Spark

- It supports classic ML algorithms
- Algorithms are distributed by nature
- Wide support of different data sources and sinks
Distributed ML with Apache Spark

- It supports classic ML algorithms
- Algorithms are distributed by nature
- Wide support of different data sources and sinks
- Easy building of Pipelines
Distributed ML with Apache Spark

• It supports classic ML algorithms
• Algorithms are distributed by nature
• Wide support of different data sources and sinks
• Easy building of Pipelines
• Model evaluation and hyper-parameter tuning support
Distributed ML platforms
Distributed ML with Apache Ignite

What is Apache Ignite?

Memory-Centric Storage

Ignite Native Persistence
(Flash, SSD, Intel 3D XPoint)

Third-Party Persistence
(RDBMS, HDFS, NoSQL)
Distributed ML with Apache Ignite

Partition Data
- Upstream Cache
 - Durable

Learning Env
- On-Heap
 - Stateless

Dataset Context
- Context Cache
 - Durable

Dataset Data
- On-Heap
 - Recoverable

Source Data

Partition Based Dataset Structures

double[][] x = ...
double[] y =...
double[][] x = ...
double[] y =...
Data preprocessing
Data preprocessing: Normalization

- **Original data**
- **Zero-centered data**
- **Normalized data**
Data preprocessing: Scaling

Without feature scaling

With feature scaling
Data preprocessing: One-Hot Encoder

- 0 → [1, 0, 0, 0, 0]
- 1 → [0, 1, 0, 0, 0]
- 2 → [0, 0, 1, 0, 0]
- 3 → [0, 0, 0, 1, 0]
Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);
Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);

Preprocessor minMaxScalerPr = new MinMaxScalerTrainer()
 .fit(ignite, dataCache, imputingPr);
Data preprocessing: API

Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);

Preprocessor minMaxScalerPr = new MinMaxScalerTrainer()
 .fit(ignite, dataCache, imputingPr);

Preprocessor normalizationPr = new NormalizationTrainer()
 .withP(1)
 .fit(ignite, dataCache, minMaxScalerPr);
Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);

Preprocessor minMaxScalerPr = new MinMaxScalerTrainer()
 .fit(ignite, dataCache, imputingPr);

Preprocessor normalizationPr = new NormalizationTrainer()
 .withP(1)
 .fit(ignite, dataCache, minMaxScalerPr);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, normalizationPr);

double accuracy = Evaluator.evaluate(dataCache, mdl, normalizationPr, new Accuracy<>());
Model training
Algorithms: Classification

- Logistic Regression
- SVM
- KNN
- ANN
- Decision trees
- Random Forest
- Naive Bayes
Algorithms: Regression

- KNN Regression
- Linear Regression
- Decision tree regression
- Random forest regression
- Gradient-boosted tree regression
Algorithms: Clusterization

- K-means
- GMM
Multilayer Perceptron Neural Network
Fill the cache

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers(ignite);
IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers(ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);
Define the trainer

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers(ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);
Train the model

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers(ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);
Evaluate the model

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers(ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);

double accuracy = Evaluator.evaluate(dataCache, mdl, vectorizer, new Accuracy<>());
```
IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers(ignite);

// Extracts "pclass", "sibsp", "parch", "sex", "embarked", "age", "fare".
Vectorizer<Integer, Vector, Integer, Double> vectorizer
    = new DummyVectorizer<Integer>(0, 3, 4, 5, 6, 8, 10).labeled(1);

PipelineMdl<Integer, Vector> mdl =
    new Pipeline<Integer, Vector, Integer, Double>()
    .addVectorizer(vectorizer)
    .addPreprocessingTrainer(new EncoderTrainer<Integer, Vector>()
        .withEncoderType(EncoderType.STRING_ENCODER)
        .withEncodedFeature(1)
        .withEncodedFeature(6))
    .addPreprocessingTrainer(new ImputerTrainer<Integer, Vector>())
    .addPreprocessingTrainer(new MinMaxScalerTrainer<Integer, Vector>())
    .addPreprocessingTrainer(new NormalizationTrainer<Integer, Vector>()
        .withP(1))
    .addTrainer(new DecisionTreeClassificationTrainer(5, 0))
    .fit(ignite, dataCache);
```
Beyond the limits of Apache Spark
Spark limits

• It doesn’t support model ensembles as stacking, boosting, bagging

• It doesn’t support online learning for all algorithms

• A lot of data transformation/overhead from data source to ML types

• The hard integration with TensorFlow/Caffe

• A part of algorithms are using sparse matrix

• ML algorithms internally uses Mllib on RDD
Bagging, Boosting and Stacking

DatasetTrainer<LogisticRegressionModel, Double> trainer =
 new LogisticRegressionSGDTrainer(...)...;

BaggedTrainer<Double> baggedTrainer = TrainerTransformers.makeBagged(trainer,
 // ensemble size, subsample ration, feature vector size, features subspace dim
 7, 0.7, 2, 2,
 new onMajorityPredictionsAggregator());
Spark limits

- It doesn’t support model ensembles as stacking, boosting, bagging
- It doesn’t support online-learning for all algorithms
SVMLinearClassificationTrainer trainer = new SVMLinearClassificationTrainer();

SVMLinearClassificationModel mdl1 = trainer.fit(ignite, dataCache1, vectorizer);

SVMLinearClassificationModel mdl2 = trainer.update(mdl1, ignite, dataCache2, vectorizer);
Spark limits

- It doesn’t support model ensembles as stacking, boosting, bagging
- It doesn’t support online-learning for all algorithms
- The hard integration with TensorFlow
- A part of algorithms are using sparse matrix
- ML algorithms internally uses Mllib on RDD
TensorFlow on Apache Ignite

- **Ignite Dataset**
- **IGFS Plugin**
- **Distributed Training**
- More info [here](#)

```python
>>> import tensorflow as tf
>>> from tensorflow.contrib.ignite import IgniteDataset
>>> dataset = IgniteDataset(cache_name="SQL_PUBLIC_KITTEN_CACHE")
>>> iterator = dataset.make_one_shot_iterator()
>>> next_obj = iterator.get_next()

>>> with tf.Session() as sess:
...    for _ in range(3):
...        print(sess.run(next_obj))

{'key': 1, 'val': {'NAME': b'WARM KITTY'}}
{'key': 2, 'val': {'NAME': b'SOFT KITTY'}}
{'key': 3, 'val': {'NAME': b'LITTLE BALL OF FUR'}}
```
Spark limits

• It doesn’t support model ensembles as stacking, boosting, bagging
• It doesn’t support online-learning for all algorithms
• The hard integration with TensorFlow
• A lot of data transformation/overhead from data source to ML types
• A part of algorithms use sparse matrix
• ML algorithms internally use Mlib on RDD
Friendship is optimal
IgniteModelStorageUtil.saveModel(ignite, model, "titanik_model_tree");

QueryCursor<List<?>> cursor = cache.query(new SqlFieldsQuery("select " +
 "survived as truth, " +
 "predict('titanik_model_tree', pclass, age, sibsp, parch, fare, case
 sex when 'male' then 1 else 0 end) as prediction " +
 "from titanik_train")
}
Model import
GridGain ML client library provides user applications the ability to work with GridGain ML functionality using Py4J as an integration mechanism.

If you want to use `ggml` in your project, you may install it from PyPI:

```bash
$ pip install ggml
```
GridGain ML client library provides user applications the ability to work with GridGain ML functionality using Py4J as an integration mechanism.

If you want to use *ggml* in your project, you may install it from PyPI:

```
$ pip install ggml
```

NB: available only for Apache Ignite master and for GG 8.7.6 (17 Jul)
It could be your application
Conclusions
Conclusion

- Apache Ignite ready for building ML/DL systems
Conclusion

- Apache Ignite ready for building ML/DL systems
- You could use other systems for any part in your architecture
Conclusion

- Apache Ignite ready for building ML/DL systems
- You could use other systems for any part of your architecture
- You could use other systems with Apache Ignite and achieve extra abilities
https://github.com/apache/ignite/

org.apache.ignite.examples.ml.tutorial
Distributed Machine and Deep Learning at Scale with Apache Ignite

Links:
• http://ignite.apache.org/
• https://medium.com/tensorflow/tensorflow-on-apache-ignite-99f1fc60efeb
• https://github.com/gridgain/ml-python-api

Email:
• user@ignite.apache.org
• dev@ignite.apache.org
• ybabak@gridgain.com