
Stacking, Boosting and 
Online Learning in 
distributed mode with 
Apache Ignite

Yuriy Babak



Yuriy Babak

Head of ML/DL framework 
development at GridGain

Apache Ignite committer



2019 © GridGain Systems

Agenda

● Overview of distributed ML/DL

● Data preprocessing in distributed environment

● Model training in distributed environment

● Building pipelines

● Stacking, Boosting and online learning

● Some extra features



Distributed 
Machine learning 



2019 © GridGain Systems

Training on PBs with scikit-learn



2019 © GridGain Systems

Distributed ML with Apache Spark

• It supports classic ML algorithms

• Algorithms are distributed by nature

• Wide support of different data sources and sinks

• Easy building of Pipelines

• Model evaluation and hyper-parameter tuning support



2019 © GridGain Systems

Distributed ML with Apache Spark

• It supports classic ML algorithms

• Algorithms are distributed by nature

• Wide support of different data sources and sinks

• Easy building of Pipelines

• Model evaluation and hyper-parameter tuning support



2019 © GridGain Systems

Distributed ML with Apache Spark

• It supports classic ML algorithms

• Algorithms are distributed by nature

• Wide support of different data sources and sinks

• Easy building of Pipelines

• Model evaluation and hyper-parameter tuning support



2019 © GridGain Systems

Distributed ML with Apache Spark

• It supports classic ML algorithms

• Algorithms are distributed by nature

• Wide support of different data sources and sinks

• Easy building of Pipelines

• Model evaluation and hyper-parameter tuning support



2019 © GridGain Systems

Distributed ML with Apache Spark

• It supports classic ML algorithms

• Algorithms are distributed by nature

• Wide support of different data sources and sinks

• Easy building of Pipelines

• Model evaluation and hyper-parameter tuning support



2019 © GridGain Systems

Distributed ML platforms



2019 © GridGain Systems

Distributed ML with Apache Ignite

What is 

Apache 

Ignite?



2019 © GridGain Systems

Distributed ML with Apache Ignite

Partition Data Dataset Context Dataset Data

Upstream Cache Context Cache On-Heap

Learning Env

On-Heap

Durable Stateless Durable Recoverable

double[][] x = …

double[] y = ...

double[][] x = …

double[] y = ...

Partition Based Dataset StructuresSource Data



2019 © GridGain Systems

Data preprocessing



2019 © GridGain Systems

Data preprocessing: Normalization



2019 © GridGain Systems

Data preprocessing: Scaling



2019 © GridGain Systems

Data preprocessing: One-Hot Encoder



2019 © GridGain Systems

Data preprocessing: API

Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);

Preprocessor minMaxScalerPr = new MinMaxScalerTrainer()

.fit(ignite, dataCache, imputingPr);

Preprocessor normalizationPr = new NormalizationTrainer()

.withP(1)

.fit(ignite, dataCache, minMaxScalerPr);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, normalizationPr);

double accuracy = Evaluator.evaluate(dataCache, mdl, normalizationPr, new 

Accuracy<>());



2019 © GridGain Systems

Data preprocessing: API

Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);

Preprocessor minMaxScalerPr = new MinMaxScalerTrainer()

.fit(ignite, dataCache, imputingPr);

Preprocessor normalizationPr = new NormalizationTrainer()

.withP(1)

.fit(ignite, dataCache, minMaxScalerPr);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, normalizationPr);

double accuracy = Evaluator.evaluate(dataCache, mdl, normalizationPr, new 

Accuracy<>());



2019 © GridGain Systems

Data preprocessing: API

Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);

Preprocessor minMaxScalerPr = new MinMaxScalerTrainer()

.fit(ignite, dataCache, imputingPr);

Preprocessor normalizationPr = new NormalizationTrainer()

.withP(1)

.fit(ignite, dataCache, minMaxScalerPr);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, normalizationPr);

double accuracy = Evaluator.evaluate(dataCache, mdl, normalizationPr, new 

Accuracy<>());



2019 © GridGain Systems

Data preprocessing: API

Preprocessor imputingPr = new ImputerTrainer().fit(ignite, dataCache, vectorizer);

Preprocessor minMaxScalerPr = new MinMaxScalerTrainer()

.fit(ignite, dataCache, imputingPr);

Preprocessor normalizationPr = new NormalizationTrainer()

.withP(1)

.fit(ignite, dataCache, minMaxScalerPr);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, normalizationPr);

double accuracy = Evaluator.evaluate(dataCache, mdl, normalizationPr, new 

Accuracy<>());



2019 © GridGain Systems

Model training



2019 © GridGain Systems

Algorithms: Classification

● Logistic Regression
● SVM
● KNN
● ANN
● Decision trees
● Random Forest
● Naive Bayes

#UnifiedAnalytics #SparkAISummit



2019 © GridGain Systems

Algorithms: Regression

• KNN Regression
• Linear Regression
• Decision tree regression
• Random forest 

regression
• Gradient-boosted tree 

regression

#UnifiedAnalytics #SparkAISummit



2019 © GridGain Systems

Algorithms: Clusterization

• K-means

• GMM

#UnifiedAnalytics #SparkAISummit



2019 © GridGain Systems

Multilayer Perceptron Neural Network

#UnifiedAnalytics #SparkAISummit



2019 © GridGain Systems
#UnifiedAnalytics #SparkAISummit

Fill the cache

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers (ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);

double accuracy = Evaluator.evaluate(dataCache, mdl, vectorizer, new Accuracy<>());



2019 © GridGain Systems
#UnifiedAnalytics #SparkAISummit

Build Labeled Vectors

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers (ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);

double accuracy = Evaluator.evaluate(dataCache, mdl, vectorizer, new Accuracy<>());



2019 © GridGain Systems
#UnifiedAnalytics #SparkAISummit

Define the trainer

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers (ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);

double accuracy = Evaluator.evaluate(dataCache, mdl, vectorizer, new Accuracy<>());



2019 © GridGain Systems
#UnifiedAnalytics #SparkAISummit

Train the model

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers (ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);

double accuracy = Evaluator.evaluate(dataCache, mdl, vectorizer, new Accuracy<>());



2019 © GridGain Systems
#UnifiedAnalytics #SparkAISummit

Evaluate the model

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers (ignite);

Vectorizer vectorizer = new DummyVectorizer(0, 5, 6).labeled(1);

DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeNode mdl = trainer.fit(ignite, dataCache, vectorizer);

double accuracy = Evaluator.evaluate(dataCache, mdl, vectorizer, new Accuracy<>());



2019 © GridGain Systems

Pipelines



2019 © GridGain Systems

ML Pipeline schema



2019 © GridGain Systems

ML Pipelines with Apache Ignite

IgniteCache<Integer, Vector> dataCache = TitanicUtils.readPassengers(ignite);

// Extracts "pclass", "sibsp", "parch", "sex", "embarked", "age", "fare".

Vectorizer<Integer, Vector, Integer, Double> vectorizer

= new DummyVectorizer<Integer>(0, 3, 4, 5, 6, 8, 10).labeled(1);

PipelineMdl<Integer, Vector> mdl =

new Pipeline<Integer, Vector, Integer, Double>()

.addVectorizer(vectorizer)

.addPreprocessingTrainer(new EncoderTrainer<Integer, Vector>()

.withEncoderType(EncoderType.STRING_ENCODER)

.withEncodedFeature(1)

.withEncodedFeature(6))

.addPreprocessingTrainer(new ImputerTrainer<Integer, Vector>())

.addPreprocessingTrainer(new MinMaxScalerTrainer<Integer, Vector>())

.addPreprocessingTrainer(new NormalizationTrainer<Integer, Vector>()

.withP(1))

.addTrainer(new DecisionTreeClassificationTrainer(5, 0))

.fit(ignite, dataCache);



2019 © GridGain Systems

Beyond the limits of 
Apache Spark 



2019 © GridGain Systems

Spark limits

• It doesn’t support model ensembles as stacking, boosting, bagging

• It doesn’t support online-learning for all algorithms

• A lot of data transformation/overhead from data source to ML types

• The hard integration with TensorFlow/Caffee

• A part of algorithms are using sparse matrix

• ML algorithms internally uses Mllib on RDD



2019 © GridGain Systems2019 © GridGain Systems

Bagging, Boosting and Stacking

DatasetTrainer<LogisticRegressionModel, Double> trainer =

new LogisticRegressionSGDTrainer(...)...;

BaggedTrainer<Double> baggedTrainer = TrainerTransformers.makeBagged(trainer,

// ensemble size, subsample ration, feature vector size, features subspace dim

7, 0.7, 2, 2,

new onMajorityPredictionsAggregator());



2019 © GridGain Systems

Spark limits

• It doesn’t support model ensembles as stacking, boosting, bagging

• It doesn’t support online-learning for all algorithms

• A lot of data transformation/overhead from data source to ML types

• The hard integration with TensorFlow/Caffee

• A part of algorithms are using sparse matrix

• ML algorithms internally uses Mllib on RDD



2019 © GridGain Systems

Online learning

SVMLinearClassificationTrainer trainer = new SVMLinearClassificationTrainer();

SVMLinearClassificationModel mdl1 = trainer.fit(ignite, dataCache1, vectorizer);

SVMLinearClassificationModel mdl2 = trainer.update(mdl1, ignite, dataCache2, 

vectorizer);



2019 © GridGain Systems

Spark limits

• It doesn’t support model ensembles as stacking, boosting, bagging

• It doesn’t support online-learning for all algorithms

• The hard integration with TensorFlow

• The hard integration with TensorFlow/Caffee

• A part of algorithms are using sparse matrix

• ML algorithms internally uses Mllib on RDD



2019 © GridGain Systems

TensorFlow on Apache Ignite

• Ignite Dataset

• IGFS Plugin

• Distributed Training

• More info here

#UnifiedAnalytics #SparkAISummit

>>> import tensorflow as tf

>>> from tensorflow.contrib.ignite import IgniteDataset

>>>

>>> dataset = IgniteDataset(cache_name="SQL_PUBLIC_KITTEN_CACHE")

>>> iterator = dataset.make_one_shot_iterator()

>>> next_obj = iterator.get_next()

>>>

>>> with tf.Session() as sess:

>>> for _ in range(3):

>>> print(sess.run(next_obj))

{'key': 1, 'val': {'NAME': b'WARM KITTY'}}

{'key': 2, 'val': {'NAME': b'SOFT KITTY'}}

{'key': 3, 'val': {'NAME': b'LITTLE BALL OF FUR'}}

https://medium.com/tensorflow/tensorflow-on-apache-ignite-99f1fc60efeb


2019 © GridGain Systems

Spark limits

• It doesn’t support model ensembles as stacking, boosting, bagging

• It doesn’t support online-learning for all algorithms

• The hard integration with TensorFlow

• A lot of data transformation/overhead from data source to ML types

• A part of algorithms use sparse matrix

• ML algorithms internally use Mllib on RDD



2019 © GridGain Systems

Friendship is optimal



2019 © GridGain Systems2019 © GridGain Systems

IMDB with built-in ML

IgniteModelStorageUtil.saveModel(ignite, model, “titanik_model_tree”);

QueryCursor<List<?>> cursor = cache.query(new SqlFieldsQuery("select " +

"survived as truth, " +

"predict('titanik_model_tree', pclass, age, sibsp, parch, fare, case 

sex when 'male' then 1 else 0 end) as prediction " +

"from titanik_train"))

2019 © GridGain 

Systems



2019 © GridGain Systems

Model import



2019 © GridGain Systems2019 © GridGain Systems

Inference in Ignite ML

2019 © GridGain 

Systems

Request queue

Response queue

Inference

Service

Inference

Service

Inference

Gateway



2019 © GridGain Systems

Apache Ignite with GridGain ML Python API

GridGain ML client library provides user applications the ability to work 

with GridGain ML functionality using Py4J as an integration mechanism.

If you want to use ggml in your project, you may install it from PyPI:

$ pip install ggml



2019 © GridGain Systems

Apache Ignite with GridGain ML Python API

GridGain ML client library provides user applications the ability to work 

with GridGain ML functionality using Py4J as an integration mechanism.

If you want to use ggml in your project, you may install it from PyPI:

$ pip install ggml

NB: available only for Apache Ignite master and for GG 8.7.6 (17 Jul)



2019 © GridGain Systems

It could be your application



2019 © GridGain Systems

Conclusions



2019 © GridGain Systems

Conclusion

● Apache Ignite ready for building ML/DL systems

● You could use other systems for any part in your architecture

● You could use other systems with Apache Igntie and achieve extra abilities 

Apache Ignite



2019 © GridGain Systems

Conclusion

● Apache Ignite ready for building ML/DL systems

● You could use other systems for any part in your architecture

● You could use other systems with Apache Igntie and achieve extra abilities 

Apache Ignite



2019 © GridGain Systems

Conclusion

● Apache Ignite ready for building ML/DL systems

● You could use other systems for any part of your architecture

● You could use other systems with Apache Ignite and achieve extra abilities



2019 © GridGain Systems2019 © GridGain Systems

Apache Ignite ML Tutorial

https://github.com/apache/ignite/

org.apache.ignite.examples.ml.tutorial

2019 © GridGain 

Systems

https://github.com/apache/ignite/


2019 © GridGain Systems

Distributed Machine and Deep Learning at 
Scale with Apache Ignite

Links:

• http://ignite.apache.org/

• https://medium.com/tensorflow/tensorflow-on-apache-ignite-99f1fc60efeb

• https://github.com/gridgain/ml-python-api

Email: 

● user@ignite.apache.org

● dev@ignite.apache.org

● ybabak@gridgain.com

http://ignite.apache.org/
https://medium.com/tensorflow/tensorflow-on-apache-ignite-99f1fc60efeb
https://github.com/gridgain/ml-python-api
http://apache-ignite-users.70518.x6.nabble.com/
http://apache-ignite-developers.2346864.n4.nabble.com/
mailto:ybabak@gridgain.com

