
java.util.concurrent
for distributed coordination

Ensar Basri Kahveci
Hazelcast

@metanet

Hazelcast
The leading open source Java IMDG

Distributed Java collections, concurrency primitives, messaging

Caching, application scaling, distributed coordination 🎉

Hazelcast Cloud

https://hazelcast.cloud

Hazelcast Jet: In-memory stream and fast batch processing

https://hazelcast.cloud

@metanet

Agenda
What is distributed coordination?

How distributed coordination APIs evolved over time?

java.util.concurrent.* for distributed coordination

Demo on Hazelcast IMDG 3.12

#

@metanet

Distributed Coordination
Leader election

Synchronization

Group membership

Configuration and metadata management

DO IT
YOURSELF

@metanet

Consensus algorithms under the hood

CP with respect to CAP

Deployed as a central repository

APIs for coordination tasks

Distributed Coordination Systems

Google Chubby (Paxos)

@metanet

Google Chubby (Paxos)

Apache ZooKeeper (ZAB)

@metanet

Google Chubby (Paxos)

Apache ZooKeeper (ZAB)

etcd (Raft)

@metanet

@metanet

/services
/payment
/product

/photo

/services
/services/payment
/services/product
/services/product/photo

Chubby & ZooKeeper etcd

@metanet

Chubby
Locking APIs Recipes

ZooKeeper etcd

@metanet

A Simple Locking Recipe for ZooKeeper
1. create an ephemeral znode “/lock”

2. if success, enter to the critical section

3. else, register a watch on “/lock”

4. when the watch is notified, i.e., the lock is released, retry step #1

@metanet

Chubby
Locking APIs Recipes

“Friends don't let
friends write
ZK recipes.”
Apache Curator
Tech Notes #6

Leader election and
distributed lock
primitives

ZooKeeper etcd

@metanet

High-level APIs
A low-level file-system / KV store API is

- easy to misuse,
- not suitable for all coordination tasks.

High-level APIs minimise guesswork and development effort.

java.util.concurrent.* in JDK

Concurrency
Nondeterminism

Distributed
applications

Multithreaded
applications

Partial failures

Google Chubby (Paxos)

Apache ZooKeeper (ZAB)

etcd (Raft)

Hazelcast IMDG 3.12
java.util.concurrent

on top of Raft

@metanet

@metanet

An Opinionated & High-Level Framework
IAtomicLong, IAtomicReference,

ICountDownLatch, ISemaphore, FencedLock

Well-defined failure semantics

CP with respect to CAP

DIY-style tested with Jepsen

https://hazelcast.com/blog/testing-the-cp-subsystem-with-jepsen/

@metanet

Understandability as a primary goal

Handles crash failures and network failures.

Operational as long as the majority is up.

Runtime concerns (snapshotting, dynamic membership)

Performance optimizations (fast reads, batching)

https://raft.github.io

Why Raft?

https://raft.github.io

@metanet

A leader is elected among the nodes.

The leader replicates ops to the followers.

All nodes run the ops in the same order.

Replicated State Machines

@metanet

CP Subsystem
Minimal configuration

CP primitives and AP data structures in the same cluster

Dynamic clustering programmatically or via REST API

@metanet

Horizontal Scalability
Each CP group runs the Raft algorithm independently.

CP primitives can be distributed to multiple CP groups.

CP groups can be distributed to CP members.

@metanet

ENOUGH TALK

LET’S DEMO

@metanet

https://github.com/metanet/juc-talk

DEMO #1: Configuration management

https://github.com/metanet/juc-talk

@metanet

FencedLock
Linearizable distributed impl of java.util.concurrent.locks.Lock

Suitable for both fine-grained and coarse-grained locking

@metanet

CP Sessions
A session starts on the first lock / semaphore request.

Session heartbeats are periodically committed in the background.

If no heartbeat for some time (session TTL), the session is closed.

Auto-release mechanism for FencedLock and ISemaphore

@metanet

DEMO #2: Adding Redundancy
We use FencedLock for leader election.

@metanet

CP sessions offer a trade-off between safety and liveness.

@metanet

DEMO #3: Fencing-off Stale Lock Holders
“How to do distributed locking”

“Distributed locks are dead; long live distributed locks!”

http://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://hazelcast.com/blog/long-live-distributed-locks/

@metanet

Recap
Avoid writing your own implementations for coordination.

High-level APIs minimise guesswork and development effort.

java.util.concurrent.* FTW!

Operational simplicity matters.

Dynamic clustering

Horizontal scalability

@metanet

Future Plans
KV Store

Event Listeners

Disk persistence

Tooling

@metanet

Resources
https://github.com/metanet/juc-talk (demos)

Hazelcast IMDG Docs

CP Subsystem Code Samples

https://hazelcast.com/blog/author/ensarbasri

Hazelcast IMDG 3.12

https://github.com/metanet/juc-talk
https://docs.hazelcast.org/docs/3.12/manual/html-single/index.html#cp-subsystem
https://github.com/hazelcast/hazelcast-code-samples/tree/master/cp-subsystem
https://hazelcast.com/blog/author/ensarbasri
https://hazelcast.org/download/

Thanks!
In-Memory

Computing Summit
Europe 2019

Ensar Basri Kahveci
Distributed Systems Engineer @ Hazelcast

@ metanet

