Data Architecture Dilemma

Many Single-Purpose Databases?

Or

A Converged Autonomous Database?

Tirthankar Lahiri
Senior Vice President, Data and In-Memory Technologies
A Brief History of Enterprise Data Management

- **Mainframe Era**
 - Mid 60s – Early 80s

- **Client-Server Era**
 - Early 80s – Mid 90s

- **Internet Era**
 - Mid 90s – Mid 2000s

- **Cloud Era**
 - Mid 2000s – Present

These are the Voyages of the Modern Enterprise
On its continuing mission …
To explore strange new data models and unique new workloads …

To Boldly Go Where No Database has Gone Before
Mainframe Era: The War of The Paradigms

- Hierarchical (IMS) or Network Models (Codasyl)
 - Data organized as trees or graphs with links
 - Data navigation was imperative:
 - Programmers described how to access data

- The RDBMS (e.g. System R) was an upstart competitor
 - Data is organized into logical sets with relationships
 - Data navigation is declarative
 - SQL describes the question, not how to get the answer

Copyright © 2019 Oracle and/or its affiliates.
Client-Server Era: The RDBMS Wins

• The RDBMS became the defacto data management standard

• Key reason: Developer Productivity
 • Declarative language and data model: Simple development
 • Standard language and APIs: Reuse developer skillsets
 • Consistent Transactions: Database guaranteed atomicity
 • Integrity of data automatically enforced by constraints

• Developers can focus on Application Logic (i.e. Development)
 • Data access, cleanliness, consistency handled by the database
Internet Era: New Extreme Requirements

- “The internet changes everything” – Larry Ellison
- “The network is the computer” – Scott McNealy

New Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Exponential growth of data</td>
</tr>
<tr>
<td>Scalability</td>
<td>Massive online user populations, much larger than enterprise</td>
</tr>
<tr>
<td>Availability</td>
<td>Requirement to be always on, 24x7 access to data</td>
</tr>
<tr>
<td>Variety</td>
<td>Many different data models (text, XML, Graph, Spatial) Object, XML databases appeared but vanished once mainstream DBs implemented them</td>
</tr>
<tr>
<td>Security</td>
<td>Much larger attack surface area than enterprise</td>
</tr>
</tbody>
</table>
Cloud Era: Developers and Microservices

“The Cloud Changes Everything”

- Deployment, Administration, specially Development
 - Empowers and Democratizes Development
 - Developers are also users (of database services)
 - Developer communities grow to planet scale

- Key transformation: Lightweight Microservices
 - Microservices encapsulate functionality of specific modules
 - Modular, loosely coupled and communicate via events
 - Agile: Can be developed and upgraded independently
 - Highly available: Microservices can fail independently
Cloud Era: **Issues with “Monolithic” Databases**

- Single Model database architecture sometimes slowed development:
 - Developers needed consensus on Data Model and Schema

- Single Database architecture sometimes could not meet cloud scale requirements
Cloud Era: **Single Purpose Makes a Comeback**

- Trend started by web giants:
 - Build Custom DBs for specific uses
 - Google Big Table, Facebook Cassandra, etc.

- NoSQL products began to proliferate
 - MongoDB, Couchbase, Redis, Neo4J ...
 - Different data models, languages, APIs

- Provided scalability & performance
 - With tradeoffs in functionality
Cloud Era: Oracle Becomes a Converged Database

- Oracle Database continued to evolve far beyond a traditional Relational DBMS

- **Converges many** data models and workloads:
 - Class Leading **Document** Database with JSON, Text, XML
 - Class Leading Database for **AI** and **Machine Learning**
 - Class Leading **Spatial** and **Graph** Database
 - Class Leading support for **IoT**, **Times Series**, **Binary Data**, **Database Resident Filesystem**, **Objects**, etc.
Meet the Present Day

Enterprise Data Architecture Dilemma
Today’s Enterprise Data Architecture Dilemma

MANY SINGLE-PURPOSE DATABASES OR A CONVERGED DATABASE

?
Single Purpose Databases: Microservice Friendly?

- Single-purpose engines may seem better for micro-services
- Each function has a separate database optimized for that use
- Functions are independent, and independent databases are also failure independent
Single Purpose Databases: Separating Myth from Reality

- **Myth #1:** Microservices need separate specialized databases
- **Fact:** They may need separate algorithms and data models
- Possible with single-purpose databases and a converged database
Many of them lack:

- Native data Integrity
- Sophisticated Indexing
- Full featured Transactions
- Enterprise Security
- Standard Declarative Languages

Each is unique, need special skills
Single Purpose Databases: Infrastructural Downsides

Administration, Integration challenges:
• Consistency of data
• Cross product compatibility
• Separate security patches
• Separate upgrade cycles
• Complex integration for Analytics
• Consistent backup of data is hard
• Microservices must manage enormous amounts of application state

• Application is responsible for:
 – Atomicity of workflows
 – Failure handling
 – Consistent security policy
Real-World Macro-Complexity

Macro-Complexity

- Multiple technologies
- Multiple data stores
- Data copied multiple times to do analytics
- Compromises security
- Compromises data consistency
- Complex to maintain
- Need highly skilled developers to build & keep running
Can a Converged Database Ever Scale Like a Single-Purpose Database?
YES
Scalability of Oracle Database

Myth #2: An RDBMS is too complex to scale effectively

- Oracle Database has made major scalability advances over decades
- Every Oracle Database release has tackled difficult scaling problems
- Major architectural features for Scale-Up, Scale-Out, Fault tolerance
Oracle Database: Decades of Scalability

Database Software

- 9i
 - Real Application Clusters
 - Automatic Segment Space Management
 - Scalable Log Generation
- 10g
 - Data Guard
 - Enterprise Manager Grid Control
 - Database Resource Manager
- 11g
 - Active Data Guard
 - Golden Gate
 - Database Resident Connection Pool
 - Advanced Compression
- 12c
 - Database In-Memory
 - Sharding
 - Multitenant
 - Application Continuity
- 18c
 - Multi-Instance Redo Apply
 - In-Memory Row Store
 - Fast Ingest for IoT
 - Adaptive Sequences
- 19c
 - RDMA Undo Read
 - Commit Cache
 - In-Memory Columnar in Flash
 - Smart Fusion Block Transfer
 - Direct-to-wire Protocol

Exadata Software and Hardware

- 2000
 - Scale-Out Storage Servers
 - Scale-Out DB Servers
 - Query offload to storage
- 2008 – First Release of Exadata
 - Tiered Disk/ Flash
 - PCIe NVMe Flash
 - Unified Infiniband
 - Hybrid Column Compression
- 2019
 - Network Resource Management
 - IO Resource Management
 - Hybrid Column Compression

Copyright © 2019 Oracle and/or its affiliates.
Database In-Memory: Converged Analytics and OLTP

- Fast OLTP and Real-Time Analytics in the same converged database

- Industry-first dual format architecture:
 - Row format ideal for OLTP, column format is ideal for Analytics
 - Same table in row and column format simultaneously
 - No data movement needed
 - Analytics against against real-time data
The Forrester Wave™: In-Memory Databases, Q1 2017

Oracle In-Memory Databases Scored Highest by Forrester on both Current Offering and Strategy

The Forrester Wave™ is copyrighted by Forrester Research, Inc. Forrester and Forrester Wave™ are trademarks of Forrester Research, Inc. The Forrester Wave™ is a graphical representation of Forrester's call on a market and is plotted using a detailed spreadsheet with exposed scores, weightings, and comments. Forrester does not endorse any vendor, product, or service depicted in the Forrester Wave. Information is based on best available resources. Opinions reflect judgment at the time and are subject to change.
In-Memory Enables SIMD Vector Processing

- Column format benefit: Need to access only needed columns
- Process multiple values with a single SIMD Vector Instruction
- Billions of rows/sec scan rate per CPU core
 - Row format is millions/sec

Example:
Find sales in State of California

> 100x Faster
Accelerates Converged Workloads

- Inserting one row into a table requires updating 10-20 analytic indexes: Slow!
- Fast analytics only on indexed columns
- Analytic indexes increase database size

- Column Store not persistent so updates are: Fast!
- Fast analytics on any columns
- No analytic indexes: Reduces database size
Example Speedup from Database In-Memory

- Synthetic converged workload consisting of DML and Analytic Queries
- Comparison between conventional indexes and Database In-Memory
 - Faster DMLs due to reduced index maintenance
 - Inmemory column store also speeds up Analytics
Multitenant: Efficient Cloud Scale Deployments

- Many tenant *Pluggable Databases* (PDBs) share a single Container Database (CDB)

- Completely application transparent

- Efficient resource sharing across tenants

- Manage many tenants as one
Sharding: A Hyperscale Database Architecture

- Divide massive databases into independent units

- Native SQL for up to 1000 Shards
 - Send SQL to correct shard based on shard-key
 - Cross shard queries

- Online reorganization of shards

- Sharding makes Oracle Database **Hyperscale**
 - Linear scalability of capacity, throughput, user population
 - Improves availability since shards are fault isolated
 - Manage of 100s of shards as a single logical database
Real-World Hyperscale Workloads

- Korea's number one mobile operator
- 65 billion transactions per day
- 18TB of data per day
- All data processing occurs on Oracle Database running on Exadata

- One of world's largest law enforcement orgs
- ~3 billion transactions per day
- ~32 billion queries per day
- Database is over 1PB
- Deployed on Oracle Database on Exadata

- World's largest stock exchange
- ~1 billion database transactions per day
 - 180,000 messages/sec
 - ~15 TB of data per day
- All data captured and processed in an Oracle Database on Exadata
Can a Converged Database Deliver the Functionality of Many Specialty Databases?
YES
Oracle Database Ranks First for all OPDBMS Use Cases

Gartner: Critical Capabilities for Operational Database Management Systems Donald Feinberg, Merv Adrian and Nick Heudecker, October 23, 2018

These graphics were published by Gartner Inc. as part of a larger research document and should be evaluated in the context of the entire document. The Gartner document is available upon request from Oracle. Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings of other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.
Oracle Database Ranks First for all OPDBMS Use Cases

Gartner: Critical Capabilities for Operational Database Management Systems Donald Feinberg, Merv Adrian and Nick Heudecker, October 23, 2018

These graphics were published by Gartner Inc. as part of a larger research document and should be evaluated in the context of the entire document. The Gartner document is available upon request from Oracle. Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings of other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.
Oracle Position: Leader
Oracle ranked highest on both Axis

- "Unlike other vendors, Oracle uses a dual-format database (row and columns for the same table) to deliver optimal translytical performance."
- "Customers like Oracle’s capability to support many workloads including OLTP, IoT, microservices, multimodel, data science, AI/ML, spatial, graph, and analytics"
- "Existing Oracle applications do not require any changes to the application in order to leverage Oracle Database In-Memory"
- "Customers like the platform’s ease of use, ease of expanding existing Oracle applications to take advantage of translytics, general data security capabilities, and technical support, as well as the Cloud At Customer offering"
JSON in Oracle **Surpasses** Document Specialists

- Developer friendly schema-less data storage

- Simple SQL Syntax with JSON paths
  ```sql
  select c.json_doc.name.last, c.json_doc.address.city
  from customers c;
  ```

- All existing Oracle features work with JSON Data

- Index any JSON column using Functional Indexes

- In-Memory Columnar Processing also allows **30-60x** faster analytics on JSON data
JSON in Oracle Surpasses Document Specialists:

Methodology: Single client executing queries repeatedly with 1s sleep time. (20M x 1KB documents)

Source of YCSB-JSON queries:

Test Hardware

- **Machine**: ½ X7 cell (each cell is 2x Xeon Silver 4114 CPU @ 2.20GHz, 10 cores, 2 th/core =40 cpus, 1024k L2, 13M L3, 187Gb RAM)
- **CPUs**: 16 cores
- **Memory**: 115GB
Machine Learning in Oracle Surpasses AI Specialists

- Many algorithms and models with Oracle Advanced Analytics option
- Machine learning models and algorithms run inside Oracle Database
 - Data stays in-place
 - Massively parallel execution
- Flexible model building
 - SQL, R or Python
 - Oracle Data Miner
 - Oracle AutoML
Oracle Big Data Spatial & Graph **Surpass** Specialists

Spatial Analysis:
- Location Data Enrichment
- Proximity and containment analysis, Clustering
- Spatial data preparation (Vector, Raster)
- Interactive visualization

Property Graph Analysis:
- Graph Database
- In-memory Analysis Engine
 - Scalable Network Analysis Algorithms
 - Declarative PGQL
 - Developer APIs
Unique Advantage for a Converged Database: Synergy

- Combined benefit exceeds the sum of individual benefits
- Convergence allows synergy across applications
- Data can be processed by many different algorithms, e.g.:
 - Relational analytics on document data
 - Fraud detection using Machine Learning inside a database transaction
 - Spatial search inside a relational application
Converged Database => Convergent Microservices
Oracle Database for Convergent Microservices

- Microservices can be stateless
 - Push application state to database
 - Push application events into database
 - Database manages atomicity
 - Database manages recovery

- Consistent security policy is seamless and easy to implement
Oracle Database for Convergent Microservices

Myth #3: Converged database architecture requires all data to be in a single database

Can still use separate databases for isolation (e.g. OLTP and Analytics)

Multitenant allows maximum flexibility for microservices
- Can share a tenant database
- Or use separate tenant databases
- Or use separate container databases

Copyright © 2019 Oracle and/or its affiliates.
What about a Hyperscale Converged Database Augmented by Machine Learning?
Autonomous Database: Ultimate Converged Platform

Self-Driving
- Scale-out database with fault-tolerance and DR
- Runs on enterprise-proven Exadata platform
- Full compatibility with existing enterprise databases

Self-Securing
- Automatically applies security updates online
- Secure configuration with full database encryption
- Sensitive data hidden from Oracle or customer admins

Self-Repairing
- Recovers automatically from any failure
- 99.995% uptime including maintenance
- Elastically scales compute or storage as needed
Autonomous Database Machine Learning

Diagnostics, recovery and optimizations for each layer of the deployment stack

Database Infrastructure
- Detection and recovery of failed/sick server, storage or switch/link

Database Operations
- Hang Management
- Anomaly Detection
- Bug Identification and Prioritization

Workload Optimizations
- Query Optimizer
- Real-time statistics
- Automatic Indexing
Autonomous Database

Thousands of New Customers

<table>
<thead>
<tr>
<th>DATA</th>
<th>MESTEC</th>
<th>Henry Ford Health System</th>
<th>veritrans</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X faster provisioning, 5X faster reporting with elastic scalability</td>
<td>600% performance improvement on ½ CPUs with Azure Interconnect</td>
<td>Provisioning time reduced from 2 days to 3 minutes</td>
<td>Guaranteed performance, availability, and security of PoS system for 1,000 clients</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SKY</th>
<th>agea</th>
<th>drop</th>
<th>SEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% reduction in time-to-market and 90% less maintenance</td>
<td>50% cost reduction versus Teradata on-prem, eliminated maintenance</td>
<td>Scale 3,500 to 10,000 stores without hiring DBAs</td>
<td>75% cost reduction in integration and flexibility to scale up 50%</td>
</tr>
</tbody>
</table>

Copyright © 2019 Oracle and/or its affiliates.
Summary: An Analogy

• In the 90s and early 2000s:
 – Many specialty single purpose devices
 – Calculators, phones, GPS, etc.
Summary: An Analogy

• In the 90s and early 2000s:
 – Many specialty single purpose devices
 – Calculators, phones, GPS, etc.

• The smartphone replaced most specialty devices and provided simplicity and synergy in a converged device
 – E.g. Calendar auto syncs from email

• Similarly: A converged database vastly simplifies enterprise architecture