é redislabs
HOME OF REDIS

10 Ways to Scale with Redis

IMCSUMMIT - NOVEMBER 2019 | DAVE NIELSEN

In-memory Multi-model Database

redislabs

HOME OF REDIS

Optionally Persistent

redislabs

OOOOOOOOOOO

ops/sec

5,020,000

3

Cluster Throughput (@ 1 msec Latency)

11,380,000

6

30,200,000

21,120,000 I

12

18
of nodes

41,190,000

24

50,420,000

26

Developers

+
Redis

redislabs

OOOOOOOOOOO

Redis Top Differentiators

Performance
NoSQL Benchmark

redislabs

Couchbase cassandra pATAsTAx EELEEGILL

-
If

Simplicity

Redis Data Structures

Bit field Geospatial Indexes
il

Extensibility

Redis Modules

<3

redislabs

HOME OF REDIS

0 Performance: The Most Powerful Database

Highest Throughput at Lowest Latency Least Servers Needed to
in High Volume of Writes Scenario Deliver 1 Million Writes/Sec

40k | 394.42 381.31 372.31 500 g 350
>

9 O——oO- & £ 300
@ 400 @ s

@ 30k 2

> 2 2 250
- (]
» 20k Z £
— ©

.E 200 I 150
4‘.50 (1]]

L 10k 9 % 100
- 100 g »

<Q w % 50

0 0 n 0

Couchbase Cassandra Datastax Redis® Cassandra Couchbase Redis®
=0~ Application Latency (msec) ANNUAL COST $2,226,216 $371,040 $14,832
COST COMPARED 150X 25X
TO REDIS"®
Benchmarks performed by Avalon Consulting Group Benchmarks published in the Google blog

fA = redislabs

HOME OF REDIS

a Simplicity: Data Structures - Redis’ Building Blocks

MISSION STATUS:

0D, IT"S FULL

“REDIS IS FULL OF DATA STRUCTURES!”

redislabs

OOOOOOOOOOO

a Simplicity: Redis Data Structures —'Lego’ Building Blocks

Strings Sets
"I'm a Plain Text String!” {A,B,C,D,E}

Bit field Geospatial Indexes
{23334}{112345569}{766538} {A:(51.5,0.12), B: (32.1,34.7) }

Hashes Hyperloglog
{A: “foo”, B: “bar”, C: “baz” } 00110101 11001110

Lists Streams

>{id1=timel.seq1(A:“xyz”, B:“cdf”),
[A >B2>C>D->E] d2=time2.seq2(D:“abc”,)}>

I ”Retrieve the e-mail address of the user with the highest -_—
i bid in an auction that started on July 24th at 11:00pm PST” =

f = redislabs

HOME OF REDIS

e Extensibility: Modules Extend Redis Infinitely

* Add-ons that use a Redis APl to seamlessly support additional

use cases and data structures.

* Enjoy Redis’ simplicity, super high performance, infinite
scalability and high availability.

* Any C/C++/Go program can become a Module and run on Redis.
e Leverage existing data structures or introduce new ones.

* Can be used by anyone; Redis Enterprise Modules are tested and certified by Redis
Labs.

e Turn Redis into a Multi-Model database

10 M = redislabs

HOME OF REDIS

e Extensibility: Modules Extend Redis Infinitely

RediSearch
RedisTimerseries
ReJSON

Rebloom
RedisGraph
Neural-Redis
Redis-Cell
Redis-Tdigest

Redis-ML

11 M =

Redis-Rating

Redis-Cuckoofilter

Cthulhu

Redis Snowflake
redis-roaring
Session Gate
ReDe

TopK

countminsketch

redislabs

OOOOOOOOOOO

Deep Dive

=z redislabs

HOME OF REDIS

<)

Real Time
Analytics

o e

Time Series Data

Lrer—y
==

AN

Very Large Data Sets

13

User Session

Store

!

Complex

Statistical Analysis

Geospatial Data

W

Real Time Data
Ingest

7 A

Notifications

w

o —

Streaming Data

High Speed
Transactions

©

Distributed Lock

\9r°
3L

10 _O¢f
[|

Machine Learning

N gr—
 —

< 4G

Job & Queue
Management

Caching

B
=Q

Search

redislabs

HOME OF REDIS

Manage Session Stores w/ Redis Hash

=z redislabs

HOME OF REDIS

A user session store is...

An chunk of data that is connected to one “user” of a service
— "user” can be a simple visitor
— or proper user with an account

Often persisted between client and server by a token in a cookie*
— Cookie is given by server, stored by browser
— Client sends that cookie back to the server on subsequent requests
— Server associates that token with data

Often the most frequently used data by that user
— Data that is specific to the user
— Data that is required for rendering or common use

Often ephemeral and duplicated

redislabs

HOME OF REDIS

Session Storage Uses Cases

Traditional Intelligent

* Username * Traditional +

* Preferences * Notifications

* Name * Past behavior

e “Stateful” data — content surfacing

— analytical information
— personalization

redislabs

HOME OF REDIS

In a simple world

@4—>=4_>

Internet Server Database

redislabs

HOME OF REDIS

Good problems

Internet

Traffic Grows...

Server

Database

Struggles

redislabs

HOME OF REDIS

Good solution

Internet

Server

Session storage
on the server

CEE———

performance restored

Database

redislabs

HOME OF REDIS

More good problems

Internet

AR CEE——— Koy

_ ~
Struggling

Server Database

Session storage
on the server

redislabs

HOME OF REDIS

Problematic Solutions

Internet

Load balanced

. CEE——— Koy
_ ~
[o]

Server Database

Session storage
on the server

redislabs

HOME OF REDIS

Multiple Servers + On-server Sessions?

Robin

Server #1 — Hello Robin!

/

Server

Database

redislabs

OOOOOOOOOOO

Multiple Servers + On-server Sessions?

Robin

Server #3 — Hello ??7??

\

Server

Database

redislabs

OOOOOOOOOOO

Better solution

Internet

Load balanced

Server

Redis
Session Storage

\ -
—_—

—_—

Database

redislabs

HOME OF REDIS

User Session Store

* The Problem

* Maintain session state across
multiple servers

* Multiple session variables

* High speed/low latency required

Why Redis Rocks

* Hashes are perfect for this!

e HSET lets you save session
variables as key/value pairs

* HGET to retrieve values

* HINCRBY to increment any
field within the hash structure

redislabs

OOOOOOOOOOO

Redis Hashes Example -

hash key: usersession:1

userid 8754 HMSET usersession:1 userid 8754 name dave ip 10:20:104:31 hits 1
name dave HMGET usersession:1 userid name ip hits

ip 10:20:104:31 . .

-~ . HINCRBY usersession:1 hits 1

lastpage home

HSET usersession:1 lastpage “home”

HGET usersession:1 lastpage

HDEL usersession:1 lastpage

EXPIRE usersession:1 10

or

DEL usersession:1

Hashes store a mapping of keys to values — like a dictionary or associative array — but faster

redislabs

HOME OF REDIS

https://redis.io/commands

Managing Queues w/ Redis Lists

=z redislabs

HOME OF REDIS

Managing Queues of Work

* The Problem

e Tasks need to be worked on asynch
to reduce block/wait times

e Lots of items to be worked on

e Assign items to worker process and
remove from queue at the same time

e Similar to buffering high speed data-
ingestion

Why Redis Rocks

* Lists are perfect for this!

e LPUSH, RPUSH add values at
beginning or end of queue

* RPOPLPUSH — pops an item
from one queue and pushes it
to another queue

redislabs

OOOOOOOOOOO

Redis Lists Example -

LPUSH adds values to head of list LPUSH queuel orange
LPUSH queuel green
LPUSH queuel blue
RPUSH queuel red

blue |green |orange |- - red

|

RPUSH adds value to tail of list

redislabs

HOME OF REDIS

https://redis.io/commands

Redis Lists Example -

LPUSH queuel orange
LPUSH queuel green

LPUSH queuel blue
RPUSH queuel red

blue |green |orange |- - , | red

RPOPLPUSH queuel queue?2

RPOPLPUSH pops a value from one list and pushes it to another list

LLEN queuel
LINDEX queuel O
LRANGE queuel 0 2

redislabs

HOME OF REDIS

https://redis.io/commands

Managing Tags w/ Redis Sets

=z redislabs

HOME OF REDIS

Managing Tags Example

The Problem
Loads of tags
Find items with particular tags

High speed/low latency required

Also used for:

Recommending Similar Purchases

Recommending Similar Posts

Why Redis Rocks

Sets are unique collections of strings
SADD to add tags to each article
SISMEMBER to check if an article has
a given tag

SMEMBERS to get all the tags for an
article

SINTER to find which articles are
tagged with tagl, tag2 and tag77

redislabs

OOOOOOOOOOO

Redis Sets Example —

article 1

SADD article:1 tag:1 tag:22 tag:24 tag:28
tagl tag22 |tag24 |tag28 SADD tag:l article:1
SADD tag:1 article:3
SADD tag:2 article:22
tag 1 SADD tag:2 article:14

SADD tag:2 article:3

article 1 | article 3

SISMEMBER article:1 tag:1
SMEMBERS article:1

tag 2

article 3 | article 14 | article 22 | ..

SINTER tag:1 tag:2

redislabs

HOME OF REDIS

https://redis.io/commands

Managing Leaderboards w/ Redis Sorted Sets

=z redislabs

Leaderboard with Sorted Sets Example

* The Problem Why Redis Rocks

* Sorted Sets are perfect!
Automatically keeps list of
users sorted by score

* MANY users playing a game or
collecting points

* Display real-time leaderboard. « ZADD to add/update
* Who is your nearest competition * ZRANGE, ZREVRANGE to get
user

e Disk-based DB is too slow _
* ZRANK will get any users

rank instantaneously

redislabs

OOOOOOOOOOO

Redis Sorted Sets -

< 44000id:3 ZADD game:1 10000 id:1
ZADD game:1 21000 id:2
ZADD game:1 34000 id:3
ZADD game:1 35000 id:4

35000 id:4

34000 id:3 id:3 +10000 ZADD game:1 44000 id:3
or
ZINCRBY game:1 10000 id:3
21000 id:2 , ZREVRANGE game:100
ZREVRANGE game:1 0 1 WITHSCORES
10000 id:1

redislabs

HOME OF REDIS

https://redis.io/commands

Searching within a Geospatial Index

=z redislabs

HOME OF REDIS

Search within a Geographic Area Example

* The Problem Why Redis Rocks

e GEOADD to add an item
Redis Geo uses Sorted Sets
so related Z-commands such

* Display real-time locations. as ZRANGE & ZREM are

* What is the nearest item NOW useful too

 GEODIST to find distance
between to points

 GEORADIUS to find all points
within an area

* MANY moving items within a
geographical area

e SQL Queries are too slow

redislabs

OOOOOOOOOOO

Redis Geospatial Index -

RedisConf
-122.3931400 37.7681300

SFO
-122.375 37.618889

Rome
41.9,12.5

Campobello di Licata
37.25, 13.916667

GEOADD locations 37.25 13.916667 “Campobello di Licata”
GEOADD locations 41.9 12.5 Rome

GEOADD locations -122.375 37.618889 SFO

GEOADD locations -122.3931400 37.7681300 Redisconf
ZRANGE locations 0 -1

GEODIST locations “"Campobello di Licata” Redisconf mi

GEOPOS locations Redisconf SFO

GEOHASH locations Redisconf

ZSCORE locations Redisconf

GEORADIUS locations -122.41942 37.77493 15 mi
GEORADIUSBYMEMBER locations Redisconf 15 mi
WITHDIST ASC

ZREM locations SFO

HOME OF REDIS

https://redis.io/commands

Fire and Forget with Pub/Sub

=z redislabs

Fire and Forget with Pub/Sub

* The Problem Why Redis Rocks

* PUBLISH

* Communicate with clients in real- SUBSCRIBE

time

redislabs

OOOOOOOOOOO

Pub/Sub Demo:

Server Setup Publisher - Steps

S redis-server 1. PUBLISH channell "hi 1"
S keys * 4. PUBLISH channell "hello 2"

S flushall 6. PUBLISH channell "hellooo 3"
9. PUBLISH channell "hello world 4"

Subscriber 1 - Steps Subscriber 2 - Steps

2. SUBSCRIBE channell 3. SUBSCRIBE channell
5. CONTROL-C

7. redis-cli
8. SUBSCRIBE channell

Will receive: Will receive:
4. hello 2 4. hello 2
9. hello world 4 6. hellooo 3

9. hello world 4 redislabs

HOME OF REDIS

https://redis.io/commands

Reliable messaging with Redis Streams

=z redislabs

HOME OF REDIS

Reliable messaging with Redis Streams

* The Problem Why Redis Rocks

« XADD

 Communicate with clients in real- XREAD

time without missing data

redislabs

OOOOOOOOOOO

Redis Streams Demo -

Server Setup Producer - Steps

redis-server 1. XADD mystream1 * greeting "hello 1"

keys * 5. XADD mystream1 * greeting "hello 2"
flushall 8. XADD mystream1 * greeting "hello 3"

Consumer 1 - Steps Consumer 2 - Steps

2. XREAD COUNT 10 STREAMS mystream1 0
4. CONTROL-C

3. XREAD COUNT 10 STREAMS mystream1 O
7. XREAD COUNT 10 STREAMS mystream1 0

6. redis-cli
9. XREAD COUNT 10 STREAMS mystream1 O

10. XREAD COUNT 10 STREAMS mystream1 0

Will receive: Will receive:
1. hellol 1. hello1
5. hello 2 5. hello 2

8. hello 3 8. hello 3 redislabs

https://redis.io/commands

More examples

=z redislabs

HOME OF REDIS

Redis Data Structures

L
2.

.
-
s i
o.M,
7.

.
9.

1o, el

47 M =

Strings - Cache SQL queries, pages, fast data

Bitmaps - Store 1s/0s (Online/Offline) like Pinterest

Bit Fields - Store arrays of complex numbers

Hashes - Store record-like info (user sessions, favorites, etc.)

Lists - Store ordered data (for ingesting data)

Sets - Store unique/unordered data (tags, unique IPs, etc.)

Sorted Sets - Store real-time sorted data like a MMPORG Leaderboard
Geospacial Indexes - Store real-time location (Uber, Lyft, etc.)
Hyperloglog - Store probabilistic data (Google Search count)

Streams - Store and share event data (similar to Kafka)

redislabs

HOME OF REDIS

In-memory, Keys & Data Structures

=z redislabs

HOME OF REDIS

Redis Keys — Ground Rules

* |It’s all about the keys
* No Querying

* No Indexes

* No Schemas

* Keys must be unique (like primary keys in an SQL database)

redislabs

OOOOOOOOOOO

Thank youl!

dave@redislabs.com

redislabs

HOME OF REDIS

