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Optionally Persistent
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Redis Top Differentiators

Performance
NoSQL Benchmark
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0 Performance: The Most Powerful Database

Highest Throughput at Lowest Latency Least Servers Needed to
in High Volume of Writes Scenario Deliver 1 Million Writes/Sec
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Couchbase Cassandra Datastax Redis® Cassandra Couchbase Redis®
=0~ Application Latency (msec) ANNUAL COST $2,226,216 $371,040 $14,832
COST COMPARED 150X 25X
TO REDIS"®
Benchmarks performed by Avalon Consulting Group Benchmarks published in the Google blog
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a Simplicity: Data Structures - Redis’ Building Blocks

MISSION STATUS:

0D, IT"S FULL

“REDIS IS FULL OF DATA STRUCTURES!”
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a Simplicity: Redis Data Structures —'Lego’ Building Blocks

Strings Sets
"I'm a Plain Text String!” {A,B,C,D,E}

Bit field Geospatial Indexes
{23334}{112345569}{766538} {A:(51.5,0.12), B: (32.1,34.7) }

Hashes Hyperloglog
{A: “foo”, B: “bar”, C: “baz” } 00110101 11001110

Lists Streams

>{id1=timel.seq1(A:“xyz”, B:“cdf”),
[A >B2>C>D->E ] d2=time2.seq2(D:“abc”, )}>

I ”Retrieve the e-mail address of the user with the highest -_—
i bid in an auction that started on July 24th at 11:00pm PST” =
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e Extensibility: Modules Extend Redis Infinitely

* Add-ons that use a Redis APl to seamlessly support additional

use cases and data structures.

* Enjoy Redis’ simplicity, super high performance, infinite
scalability and high availability.

* Any C/C++/Go program can become a Module and run on Redis.
e Leverage existing data structures or introduce new ones.

* Can be used by anyone; Redis Enterprise Modules are tested and certified by Redis
Labs.

e Turn Redis into a Multi-Model database
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e Extensibility: Modules Extend Redis Infinitely

RediSearch
RedisTimerseries
ReJSON

Rebloom
RedisGraph
Neural-Redis
Redis-Cell
Redis-Tdigest

Redis-ML

11 M =

Redis-Rating

Redis-Cuckoofilter

Cthulhu

Redis Snowflake
redis-roaring
Session Gate
ReDe

TopK

countminsketch
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Deep Dive
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Manage Session Stores w/ Redis Hash
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A user session store is...

An chunk of data that is connected to one “user” of a service
— "user” can be a simple visitor
— or proper user with an account

Often persisted between client and server by a token in a cookie*
— Cookie is given by server, stored by browser
— Client sends that cookie back to the server on subsequent requests
— Server associates that token with data

Often the most frequently used data by that user
— Data that is specific to the user
— Data that is required for rendering or common use

Often ephemeral and duplicated
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Session Storage Uses Cases

Traditional Intelligent

* Username * Traditional +

* Preferences * Notifications

* Name * Past behavior

e “Stateful” data — content surfacing

— analytical information
— personalization
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In a simple world

@4—>=4_>

Internet Server Database
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Good problems

Internet

Traffic Grows...

Server

Database

Struggles
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Good solution

Internet

Server

Session storage
on the server

CEE———

performance restored

Database
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More good problems

Internet

AR CEE——— Koy

_ ~
Struggling

Server Database

Session storage
on the server
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Problematic Solutions

Internet

Load balanced

. CEE——— Koy
_ ~
[ o]

Server Database

Session storage
on the server
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Multiple Servers + On-server Sessions?

Robin

Server #1 — Hello Robin!

/

Server

Database
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Multiple Servers + On-server Sessions?

Robin

Server #3 — Hello ??7??

\

Server

Database
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Better solution

Internet

Load balanced

Server

Redis
Session Storage

\ -
—_—

—_—

Database
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User Session Store

* The Problem

* Maintain session state across
multiple servers

* Multiple session variables

* High speed/low latency required

Why Redis Rocks

* Hashes are perfect for this!

e HSET lets you save session
variables as key/value pairs

* HGET to retrieve values

* HINCRBY to increment any
field within the hash structure
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Redis Hashes Example -

hash key: usersession:1

userid 8754 HMSET usersession:1 userid 8754 name dave ip 10:20:104:31 hits 1
name dave HMGET usersession:1 userid name ip hits

ip 10:20:104:31 . .

-~ . HINCRBY usersession:1 hits 1

lastpage home

HSET usersession:1 lastpage “home”

HGET usersession:1 lastpage

HDEL usersession:1 lastpage

EXPIRE usersession:1 10

or

DEL usersession:1

Hashes store a mapping of keys to values — like a dictionary or associative array — but faster
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https://redis.io/commands

Managing Queues w/ Redis Lists

=z redislabs

HOME OF REDIS




Managing Queues of Work

* The Problem

e Tasks need to be worked on asynch
to reduce block/wait times

e Lots of items to be worked on

e Assign items to worker process and
remove from queue at the same time

e Similar to buffering high speed data-
ingestion

Why Redis Rocks

* Lists are perfect for this!

e LPUSH, RPUSH add values at
beginning or end of queue

* RPOPLPUSH — pops an item
from one queue and pushes it
to another queue
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Redis Lists Example -

LPUSH adds values to head of list LPUSH queuel orange
LPUSH queuel green
LPUSH queuel blue
RPUSH queuel red

blue |green |orange |- - red

|

RPUSH adds value to tail of list

redislabs
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https://redis.io/commands

Redis Lists Example -

LPUSH queuel orange
LPUSH queuel green

LPUSH queuel blue
RPUSH queuel red

blue |green |orange |- - , | red

RPOPLPUSH queuel queue?2

RPOPLPUSH pops a value from one list and pushes it to another list

LLEN queuel
LINDEX queuel O
LRANGE queuel 0 2
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Managing Tags w/ Redis Sets
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Managing Tags Example

The Problem
Loads of tags
Find items with particular tags

High speed/low latency required

Also used for:

Recommending Similar Purchases

Recommending Similar Posts

Why Redis Rocks

Sets are unique collections of strings
SADD to add tags to each article
SISMEMBER to check if an article has
a given tag

SMEMBERS to get all the tags for an
article

SINTER to find which articles are
tagged with tagl, tag2 and tag77
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Redis Sets Example —

article 1

SADD article:1 tag:1 tag:22 tag:24 tag:28
tagl tag22 |tag24 |tag28 SADD tag:l article:1
SADD tag:1 article:3
SADD tag:2 article:22
tag 1 SADD tag:2 article:14

SADD tag:2 article:3

article 1 | article 3

SISMEMBER article:1 tag:1
SMEMBERS article:1

tag 2

article 3 | article 14 | article 22 | ..

SINTER tag:1 tag:2
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Managing Leaderboards w/ Redis Sorted Sets
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Leaderboard with Sorted Sets Example

* The Problem Why Redis Rocks

* Sorted Sets are perfect!
Automatically keeps list of
users sorted by score

* MANY users playing a game or
collecting points

* Display real-time leaderboard. « ZADD to add/update
* Who is your nearest competition * ZRANGE, ZREVRANGE to get
user

e Disk-based DB is too slow _
*  ZRANK will get any users

rank instantaneously
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Redis Sorted Sets -

< 44000id:3 ZADD game:1 10000 id:1
ZADD game:1 21000 id:2
ZADD game:1 34000 id:3
ZADD game:1 35000 id:4

35000 id:4

34000 id:3 id:3 +10000 ZADD game:1 44000 id:3
or
ZINCRBY game:1 10000 id:3
21000 id:2 , ZREVRANGE game:100
ZREVRANGE game:1 0 1 WITHSCORES
10000 id:1

redislabs

HOME OF REDIS


https://redis.io/commands

Searching within a Geospatial Index
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Search within a Geographic Area Example

* The Problem Why Redis Rocks

e GEOADD to add an item
Redis Geo uses Sorted Sets
so related Z-commands such

* Display real-time locations. as ZRANGE & ZREM are

* What is the nearest item NOW useful too

 GEODIST to find distance
between to points

 GEORADIUS to find all points
within an area

* MANY moving items within a
geographical area

e SQL Queries are too slow
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Redis Geospatial Index -

RedisConf
-122.3931400 37.7681300

SFO
-122.375 37.618889

Rome
41.9,12.5

Campobello di Licata
37.25, 13.916667

GEOADD locations 37.25 13.916667 “Campobello di Licata”
GEOADD locations 41.9 12.5 Rome

GEOADD locations -122.375 37.618889 SFO

GEOADD locations -122.3931400 37.7681300 Redisconf
ZRANGE locations 0 -1

GEODIST locations “"Campobello di Licata” Redisconf mi

GEOPOS locations Redisconf SFO

GEOHASH locations Redisconf

ZSCORE locations Redisconf

GEORADIUS locations -122.41942 37.77493 15 mi
GEORADIUSBYMEMBER locations Redisconf 15 mi
WITHDIST ASC

ZREM locations SFO

HOME OF REDIS


https://redis.io/commands

Fire and Forget with Pub/Sub
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Fire and Forget with Pub/Sub

* The Problem Why Redis Rocks

* PUBLISH

* Communicate with clients in real- SUBSCRIBE

time
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Pub/Sub Demo:

Server Setup Publisher - Steps

S redis-server 1. PUBLISH channell "hi 1"
S keys * 4. PUBLISH channell "hello 2"

S flushall 6. PUBLISH channell "hellooo 3"
9. PUBLISH channell "hello world 4"

Subscriber 1 - Steps Subscriber 2 - Steps

2. SUBSCRIBE channell 3. SUBSCRIBE channell
5. CONTROL-C

7. redis-cli
8. SUBSCRIBE channell

Will receive: Will receive:
4. hello 2 4. hello 2
9. hello world 4 6. hellooo 3

9. hello world 4 redislabs
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Reliable messaging with Redis Streams
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Reliable messaging with Redis Streams

* The Problem Why Redis Rocks

« XADD

 Communicate with clients in real- XREAD

time without missing data
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Redis Streams Demo -

Server Setup Producer - Steps

redis-server 1. XADD mystream1 * greeting "hello 1"

keys * 5. XADD mystream1 * greeting "hello 2"
flushall 8. XADD mystream1 * greeting "hello 3"

Consumer 1 - Steps Consumer 2 - Steps

2. XREAD COUNT 10 STREAMS mystream1 0
4. CONTROL-C

3. XREAD COUNT 10 STREAMS mystream1 O
7. XREAD COUNT 10 STREAMS mystream1 0

6. redis-cli
9. XREAD COUNT 10 STREAMS mystream1 O

10. XREAD COUNT 10 STREAMS mystream1 0

Will receive: Will receive:
1. hellol 1. hello1
5. hello 2 5. hello 2

8. hello 3 8. hello 3 redislabs
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More examples
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Redis Data Structures
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Strings - Cache SQL queries, pages, fast data

Bitmaps - Store 1s/0s (Online/Offline) like Pinterest

Bit Fields - Store arrays of complex numbers

Hashes - Store record-like info (user sessions, favorites, etc.)

Lists - Store ordered data (for ingesting data)

Sets - Store unique/unordered data (tags, unique IPs, etc.)

Sorted Sets - Store real-time sorted data like a MMPORG Leaderboard
Geospacial Indexes - Store real-time location (Uber, Lyft, etc.)
Hyperloglog - Store probabilistic data (Google Search count)

Streams - Store and share event data (similar to Kafka)
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In-memory, Keys & Data Structures
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Redis Keys — Ground Rules

* |It’s all about the keys
* No Querying

* No Indexes

* No Schemas

* Keys must be unique (like primary keys in an SQL database)
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Thank youl!

dave@redislabs.com
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