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Alluxio Overview

• Open source data orchestration 
• Commonly used for data analytics such as OLAP on Hadoop
• Deployed at Huya, Walmart, Tencent, and many others
• Largest deployments of over 1000 nodes
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Deployed at Scale in Different Environment

On-Prem

• Huya: 1300+ nodes
• Sogou: 1000+ nodes
• Momo: 850 nodes

Single Cloud

• Bazaarvoice: AWS
• Ryte: AWS
• Walmart Labs: GCP

Hybrid Cloud

• DBS Bank
• ING Bank
• Comcast
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Alluxio Architecture



Alluxio Master

• Responsible for storing and serving metadata in Alluxio
• What is Filesystem Metadata

• Data structure of the Filesystem Tree (namespace)
■ Can include mounts of other file system namespaces
■ The size of the tree can be very large!

• Data structure to map files to blocks and their locations
■ Very dynamic in Alluxio

• Who is the primary master 
■ One primary + several standby masters 



Challenges



Metadata Storage Challenges

• Storing the raw metadata becomes a problem with a large number 
of files

• On average, each file takes 1KB of on-heap storage
• 1 billion files would take 1 TB of heap space!
• A typical JVM runs with < 64GB of heap space
• GC becomes a big problem when using larger heaps



Metadata Storage Challenges

• Durability for the metadata is important
• Need to restore state after planned or unplanned restarts or machine loss

• The speed at which the system can recover determines the amount 
of downtime suffered

• Restoring a 1TB sized snapshot takes a nontrivial amount of time!



Metadata Serving Challenges

• Common file operations (ie. getStatus, create) need to be fast
• On heap data structures excel in this case

• Operations need to be optimized for high concurrency
• Generally many readers and few writers for large-scale analytics 



Metadata Serving Challenges

• The metadata service also needs to sustain high load
• A cluster of 100 machines can easily house over 5k concurrent clients!

• Connection life cycles need to be managed well
• Connection handshake is expensive
• Holding an idle connection is also detrimental



Solutions: Combining Different Open-
Source Technologies as Building 
Blocks



Solving Scalable Metadata 
Storage Using RocksDB



RocksDB

• https://rocksdb.org/
• RocksDB is an embeddable 

persistent key-value store for 
fast storage

https://rocksdb.org/


Tiered Metadata Storage

• Uses an embedded RocksDB to store inode tree
• Solves the storage heap space problem

• Developed new data structures to optimize for storage in RocksDB
• Internal cache used to mitigate on-disk RocksDB performance

• Solves the serving latency problem
• Performance is comparable to previous on-heap implementation

• [In-Progress] Use tiered recovery to incrementally make the 
namespace available on cold start

• Solves the recovery problem



Tiered Metadata Storage => 1 Billion Files
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Alluxio Master

Local Disk

RocksDB (Embedded)
● Inode Tree
● Block Map
● Worker Block Locations

On Heap
● Inode Cache
● Mount Table
● Locks



Working with RocksDB

• Abstract the metadata storage layer
• Redesign the data structure representation of the Filesystem Tree

• Each inode is represented by a numerical ID
• Edge table maps <ID,childname> to <ID of child> Ex: <1foo, 2>
• Inode table maps <ID> to <Metadata blob of inode> Ex: <2, proto>

• Two table solution provides good performance for common 
operations

• One lookup for listing by using prefix scan
• Path depth lookups for tree traversal
• Constant number of inserts for updates/deletes/creates



Example RocksDB Operations

• To create a file, /s3/data/june.txt:
• Look up <rootID, s3> in the edge table to get <s3ID>
• Look up <s3ID, data> in the edge table to get <dataID>
• Look up <dataID> in the inode table to get <dataID metadata>
• Update <dataID, dataID metadata> in the inode table
• Put <june.txtID, june.txt metadata> in the inode table
• Put <dataId, june.txt> in the edge table

• To list children of /:
• Prefix lookup of <rootId> in the edge table to get all <childID>s
• Look up each <childID> in the inode table to get <child metadata>



Effects of the Inode Cache

• Generally can store up to 10M inodes
• Caching top levels of the Filesystem Tree greatly speeds up read 

performance
• 20-50% performance loss when addressing a filesystem tree that does not 

mostly fit into memory
• Writes can be buffered in the cache and are asynchronously flushed 

to RocksDB
• No requirement for durability - that is handled by the journal



Self-Managed Quorum for 
Leader Election and Journal 
Fault Tolerance Using Raft



• Running Alluxio in HA
• Zookeeper: Serve and elect 

the leader master for HA
• HDFS: Journal Storage shared 

among masters

• Problems
• Limited choice of journal 

storage
• local, streaming writes

• Hard to debug/recover on 
service outrage

• Hard to maintain

Alluxio 1.x HA Relies on ZK/HDFS 
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RAFT
• https://raft.github.io/
• Raft is a consensus algorithm that is 

designed to be easy to understand. 
It's equivalent to Paxos in fault-
tolerance and performance.

• Implemented by 
https://github.com/atomix/copycat

https://raft.github.io/
https://github.com/atomix/copycat


Built-in Fault Tolerance

• Alluxio Masters are run as a quorum for journal fault tolerance
• Metadata can be recovered, solving the durability problem
• This was previously done utilizing an external fault tolerance storage

• Alluxio Masters leverage the same quorum to elect a leader
• Enables hot standbys for rapid recovery in case of single node failure



• Consensus achieved 
internally

• Leading masters commits state 
change

• Benefits
• Local disk for journal

• Challenges
• Performance tuning 

A New HA Mode with Self-managed Services
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High-Performance and Unified 
RPC Framework Using gRPC



RPC System in Alluxio 1.x

• Master RPC using Thrift
• Filesystem metadata operations

• Worker RPC using Netty
• Data operations

• Problems
• Hard to maintain and extend 

two systems
• Thrift is not maintained, no 

streaming RPC support
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gRPC

• https://grpc.io/
• gRPC is a modern open source 

high performance RPC 
framework that can run in any 
environment

• Works well with Protobuf for 
serialization

https://grpc.io/


Unified RPC Framework in Alluxio 2.0

• Unify all RPC interfaces 
using gRPC

• Benefits
• Streaming I/O
• Protobuf everywhere
• Well maintained & documented

• Challenges
• Performance tuning
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gRPC Transport Layer

• Connection multiplexing to reduce the number of connections from 
# of application threads to # of applications

• Solves the connection life cycle management problem
• Threading model enables the master to serve concurrent requests at 

scale
• Solves the high load problem

• High metadata throughput needs to be matched with efficient IO
• Consolidated Thrift (Metadata) and Netty (IO)

Check out this blog for more details:  https://www.alluxio.com/blog/moving-from-apache-thrift-to-grpc-
a-perspective-from-alluxio

https://www.alluxio.com/blog/moving-from-apache-thrift-to-grpc-a-perspective-from-alluxio


Questions?
Alluxio Website - https://www.alluxio.io
Alluxio Community Slack Channel - https://www.alluxio.io/slack
Alluxio Office Hours & Webinars - https://www.alluxio.io/events


