
Building High-Performance, Concurrent &
Scalable Filesystem Metadata Services

Bin Fan @ In-Memory Computing Summit

Featuring gRPC, Raft, and RocksDB

● PhD CS@CMU
● Founding Member, VP of Open Source @ Alluxio
● Email: binfan@alluxio.com

About Me

Bin Fan

Alluxio Overview

• Open source data orchestration
• Commonly used for data analytics such as OLAP on Hadoop
• Deployed at Huya, Walmart, Tencent, and many others
• Largest deployments of over 1000 nodes

1 3 70
210

750

1080

Fast Growing Developer Community

Started as Haoyuan Li’s PhD project “Tachyon”

v1.0
Feb ‘16

v0.6
Mar ‘15

v0.2
Apr ‘13

v0.1
Dec ‘12

v2.1
Nov ‘19

v1.8
Jul ‘18

Open sourced in under Apache 2.0 License

Consumer Travel & TransportationTelco & Media

TechnologyFinancial Services Retail & Entertainment Data & Analytics
Services

Deployed in Hundreds of Companies

Deployed at Scale in Different Environment

On-Prem

• Huya: 1300+ nodes
• Sogou: 1000+ nodes
• Momo: 850 nodes

Single Cloud

• Bazaarvoice: AWS
• Ryte: AWS
• Walmart Labs: GCP

Hybrid Cloud

• DBS Bank
• ING Bank
• Comcast

Agenda

Architecture1

Challenges2

Solutions3

Architecture

Alluxio Architecture

Alluxio Master

• Responsible for storing and serving metadata in Alluxio
• What is Filesystem Metadata

• Data structure of the Filesystem Tree (namespace)
■ Can include mounts of other file system namespaces
■ The size of the tree can be very large!

• Data structure to map files to blocks and their locations
■ Very dynamic in Alluxio

• Who is the primary master
■ One primary + several standby masters

Challenges

Metadata Storage Challenges

• Storing the raw metadata becomes a problem with a large number
of files

• On average, each file takes 1KB of on-heap storage
• 1 billion files would take 1 TB of heap space!
• A typical JVM runs with < 64GB of heap space
• GC becomes a big problem when using larger heaps

Metadata Storage Challenges

• Durability for the metadata is important
• Need to restore state after planned or unplanned restarts or machine loss

• The speed at which the system can recover determines the amount
of downtime suffered

• Restoring a 1TB sized snapshot takes a nontrivial amount of time!

Metadata Serving Challenges

• Common file operations (ie. getStatus, create) need to be fast
• On heap data structures excel in this case

• Operations need to be optimized for high concurrency
• Generally many readers and few writers for large-scale analytics

Metadata Serving Challenges

• The metadata service also needs to sustain high load
• A cluster of 100 machines can easily house over 5k concurrent clients!

• Connection life cycles need to be managed well
• Connection handshake is expensive
• Holding an idle connection is also detrimental

Solutions: Combining Different Open-
Source Technologies as Building
Blocks

Solving Scalable Metadata
Storage Using RocksDB

RocksDB

• https://rocksdb.org/
• RocksDB is an embeddable

persistent key-value store for
fast storage

https://rocksdb.org/

Tiered Metadata Storage

• Uses an embedded RocksDB to store inode tree
• Solves the storage heap space problem

• Developed new data structures to optimize for storage in RocksDB
• Internal cache used to mitigate on-disk RocksDB performance

• Solves the serving latency problem
• Performance is comparable to previous on-heap implementation

• [In-Progress] Use tiered recovery to incrementally make the
namespace available on cold start

• Solves the recovery problem

Tiered Metadata Storage => 1 Billion Files

20

Alluxio Master

Local Disk

RocksDB (Embedded)
● Inode Tree
● Block Map
● Worker Block Locations

On Heap
● Inode Cache
● Mount Table
● Locks

Working with RocksDB

• Abstract the metadata storage layer
• Redesign the data structure representation of the Filesystem Tree

• Each inode is represented by a numerical ID
• Edge table maps <ID,childname> to <ID of child> Ex: <1foo, 2>
• Inode table maps <ID> to <Metadata blob of inode> Ex: <2, proto>

• Two table solution provides good performance for common
operations

• One lookup for listing by using prefix scan
• Path depth lookups for tree traversal
• Constant number of inserts for updates/deletes/creates

Example RocksDB Operations

• To create a file, /s3/data/june.txt:
• Look up <rootID, s3> in the edge table to get <s3ID>
• Look up <s3ID, data> in the edge table to get <dataID>
• Look up <dataID> in the inode table to get <dataID metadata>
• Update <dataID, dataID metadata> in the inode table
• Put <june.txtID, june.txt metadata> in the inode table
• Put <dataId, june.txt> in the edge table

• To list children of /:
• Prefix lookup of <rootId> in the edge table to get all <childID>s
• Look up each <childID> in the inode table to get <child metadata>

Effects of the Inode Cache

• Generally can store up to 10M inodes
• Caching top levels of the Filesystem Tree greatly speeds up read

performance
• 20-50% performance loss when addressing a filesystem tree that does not

mostly fit into memory
• Writes can be buffered in the cache and are asynchronously flushed

to RocksDB
• No requirement for durability - that is handled by the journal

Self-Managed Quorum for
Leader Election and Journal
Fault Tolerance Using Raft

• Running Alluxio in HA
• Zookeeper: Serve and elect

the leader master for HA
• HDFS: Journal Storage shared

among masters

• Problems
• Limited choice of journal

storage
• local, streaming writes

• Hard to debug/recover on
service outrage

• Hard to maintain

Alluxio 1.x HA Relies on ZK/HDFS

25

Standby
Master

Leading
Master

Standby
Master

Shared Storage

write
journal

Hello,
leader

read
journal

RAFT
• https://raft.github.io/
• Raft is a consensus algorithm that is

designed to be easy to understand.
It's equivalent to Paxos in fault-
tolerance and performance.

• Implemented by
https://github.com/atomix/copycat

https://raft.github.io/
https://github.com/atomix/copycat

Built-in Fault Tolerance

• Alluxio Masters are run as a quorum for journal fault tolerance
• Metadata can be recovered, solving the durability problem
• This was previously done utilizing an external fault tolerance storage

• Alluxio Masters leverage the same quorum to elect a leader
• Enables hot standbys for rapid recovery in case of single node failure

• Consensus achieved
internally

• Leading masters commits state
change

• Benefits
• Local disk for journal

• Challenges
• Performance tuning

A New HA Mode with Self-managed Services

28

Standby
Master

Leading
Master

Standby
Master

Raft

State Change

State
Change

State
Change

High-Performance and Unified
RPC Framework Using gRPC

RPC System in Alluxio 1.x

• Master RPC using Thrift
• Filesystem metadata operations

• Worker RPC using Netty
• Data operations

• Problems
• Hard to maintain and extend

two systems
• Thrift is not maintained, no

streaming RPC support

Alluxio
Master

Alluxio
Worker

Application

Alluxio
Client

Thrift
RPC

Thrift
RPC

Netty
RPC

gRPC

• https://grpc.io/
• gRPC is a modern open source

high performance RPC
framework that can run in any
environment

• Works well with Protobuf for
serialization

https://grpc.io/

Unified RPC Framework in Alluxio 2.0

• Unify all RPC interfaces
using gRPC

• Benefits
• Streaming I/O
• Protobuf everywhere
• Well maintained & documented

• Challenges
• Performance tuning

Alluxio
Master

Alluxio
Worker

Application

Alluxio
Client

gRPC

gRPC

gRPC

gRPC Transport Layer

• Connection multiplexing to reduce the number of connections from
of application threads to # of applications

• Solves the connection life cycle management problem
• Threading model enables the master to serve concurrent requests at

scale
• Solves the high load problem

• High metadata throughput needs to be matched with efficient IO
• Consolidated Thrift (Metadata) and Netty (IO)

Check out this blog for more details: https://www.alluxio.com/blog/moving-from-apache-thrift-to-grpc-
a-perspective-from-alluxio

https://www.alluxio.com/blog/moving-from-apache-thrift-to-grpc-a-perspective-from-alluxio

Questions?
Alluxio Website - https://www.alluxio.io
Alluxio Community Slack Channel - https://www.alluxio.io/slack
Alluxio Office Hours & Webinars - https://www.alluxio.io/events

