
GridGain Ultimate Edition aids implementation
of SaaS systems and replaces traditional

databases
Craig Gresbrink

Solutions Architect
24 Hour Fitness

Who, What, Why, How, and
Learnings

Tales from the trenches

3

Who are we?
24 Hour Fitness is a leading fitness industry pioneer with more than 400 clubs
across the United States. 24 Hour Fitness has 20,000 plus employees
serving nearly 4 million club members.

What we built
Architecture and infrastructure

5

Current Architecture and “The Grid”

5

Clients/UIs/Applications

ESB

Data
Services

Data Fabric (GridGain) Databases

SaaS
APIsJVM JVM

JVM

JVM JVM

JVM

Server
Node

Server
Node

Server
Node

Server
Node

Server
Node

Server
Node

Cache
LoadersJVM JVM

Continuous
Query

Listener

JVM

JVM JVM

6

Infrastructure:
- not my specialty, but very important

7 Node GridGain Cluster…
Each Virtual Server Node:

• 8 vCPUs

• 64GB RAM
• Memory segmentation
- 45G Durable
- 14G Java Heap
- 5G OS/Disk Buffers/GG Disk Pointers

7

Billing System Object Model

7

8

Volume of Data

1.5 million (member) accounts

1.8 million Subscriptions

2 million Rate plans

8.2 million Rate plan charges

3 million Invoices

9 million Invoice items (and will continue to grow rapidly)

1.4 million payments

9

High level

9

Why we built it
External Systems’ API constraints

11

Why use an In-Memory Data Grid?
Some Cloud/SaaS APIs:

1. Are slow and chatty
• a double edge sword as this means, extra slow

2. Are not guaranteed to be up 24/7

3. Have rate limits

4. Can’t support searches
• LastName like ‘Gre%’

5. Allow for single object/entity/table querying only
• Lack of joins, hampers development, debugging and production support

Single Data Store for data from disparate systems

Wait, a traditional database can solve this!, but the grid is…

IMDGs are fast and scalable

• not just fast, but really fast, as we shall see.

How did we build it
Cache Loaders

Data Services and SQL Queries
Continuous Queries

1313

D o y o u w a n t t o r e f a c t o r ?
Depending on timelines and your appetite for trial and error, consider using GridGain support

2017 IMC
Presentation
involves a vision
of caching billing
system data as a
solution to API
rate limits

Q 3 2 0 1 7

Evangelizing
the idea, which
is at first
dismissed as
unnecessary
now, maybe later

Q 1 / Q 2 2 0 1 8

Like clauses in
member search
expose need for
a solution. 40
day support
contract signed
to build “The
Grid"

Q 3 2 0 1 8

2 Club “pilot” goes
live

Q 2 2 0 1 9

20, 40, 100 clubs
clubs/600k
accounts:
exposes full
table scans =
SQL Tuning
ALL 430 Clubs!

Q 3 / Q 4 2 0 1 9

GridGain Support – 40 Days

14

SQL Platform - Cache Loaders hold
Cache/SQL Config

<bean class="org.apache.ignite.configuration.CacheConfiguration">

<property name="name" value="SUBSCRIPTION_CACHE" />

…

<property name="queryEntities">

<property name="fields">

<map>

<entry key="accountId" value="java.lang.String" />

…
<property name="indexes">

<list>

<bean class="org.apache.ignite.cache.QueryIndex"> <constructor-arg value="id" /> </bean>

<bean class="org.apache.ignite.cache.QueryIndex"> <constructor-arg value="accountId" /> </bean>

15

SQL Platform – Data Services Ignite Thick
Clients Run Queries

List<Row> openInvoices =
dataFabricFacadeEjb.runAttributesQuery(QueryFactory.getOpenInvoicesBySubscriptionIds (), new Object[] {
subscriptionIds.toArray() });

public static Query getOpenInvoicesBySubsQuery() {
return new Query(

“SELECT i.id,
i.invoicenumber,
i.balance,
i.invoicedate

FROM invoice_cache.invoice i
INNER JOIN invoice_item_cache.invoiceitem ii ON i.id = ii.invoiceId
JOIN table(subscriptionid varchar = ?) subscription ON ii.subscriptionid = subscription.subscriptionId

WHERE i.posteddate IS NOT NULL
AND i.balance > 0

GROUP BY i.id,
i.invoicenumber,
i.balance;", false); }

16

SQL Platform – Web Console, Explain Plans

AND (I__Z0.ID = II__Z1.INVOICEID))
GROUP BY I__Z0.ID, I__Z0.INVOICENUMBER, I__Z0.BALANCE

Affinity Domains
Avoid distributedJoins=true which is synonymous with checking Allow non-collocated joins

18

To allow DistributedJoins=true or not?

19

Billing System Object Model

19

20

What data is
in the grid?

20

21

24 Hour Fitness
Affinity Domains

21

22

It’s a SOR subject!

System Of Record

1. Inserts and updates occur to the grid and only to the grid

This leads to, as it would for any database:

1. How do I back it up?

2. How do I restore it?

23

Ultimately, you need Ultimate

24

Why use Ultimate?

1. The Grid is a System of Record acting as an IMDB
• This is the case for member check-in data

OR

2. Data volumes in your source system are “too
large/slow” to retrieve and repopulate the grid.

• This is the case for invoices and payments in our billing system
• Restoration of The Grid, via Ultimate, is much faster, and much more

reliable, since you don’t depend on external systems.

25

Native persistence

26

Ultimate – Backup and Recovery

24 Hour Fitness:
1. Nightly full backups/snapshots
2. Hourly incremental backups (deltas)

You can do point in time recovery up to the minute via the WAL
– Write Ahead Log

We retain these backups for 5 days

You’ll need to consider what makes sense for your business

27

Continuous Query
Payment of an invoice

User Story:
As a member services representative
I want to have the system send a thank you email/text to all members when they make an on time
payment of their invoice
So that we show appreciation for their business and the member receives confirmation of the
transaction

Given that the In-Memory Data Grid receives payment information every 15 minutes
And that it also has their email, and possibly their mobile phone and opt-in/out to text messages
When we determine their communication preferences
Then we send them an email (if opted in) and/or a text (if opted in)

28

Remote Filters
and Local
Listeners

28

Learnings
“Optimizer”, Explain Plans, and SQL Tuning

30

Indexes, if 1 is good more is better!

What does the documentation say?:

Indexes Tradeoffs
There are multiple things you should consider when choosing indexes for your
Ignite application.
Indexes are not free. They consume memory, also each index needs to be
updated separately, thus your cache update performance can be poorer when
you have more indexes set up. On top of that, the optimizer might do more
mistakes by choosing a wrong index to run a query.

It is a bad strategy to index everything!

31

Pain is just weakness leaving the body!

What worked in Oracle will work in the Grid, right?
• Naïve approach, create indexes on status columns etc… to support potential

adhoc queries

Learning:

The Grid’s optimizer is not as sophisticated as Oracle’s optimizer.

32

A new 24 Hour Fitness standard emerges

New Standards emerge:

1. Create indexes on these, and only these:
- Ids(primaryKeys) ex. Accound.id, Subscription.id
- Foreign keys (for joins) ex. Subscription.accountId
- Natural keys (unique or not) ex. Account.accountNumber, Subscription.name
- Dates (for batch jobs that query on date ranges) – Account.updatedDate

• Be careful, it might start using your batch/date indexes if that column is in your transactional
queries.

2. Explain plans must be presented for any new/changed queries
• They are “code” reviewed by “The Cache Team” to verify the proper indexes are

being used.

33

Can I get a hint?

Sometimes the optimizer chooses the wrong index, so help the optimizer help you:

SELECT invoice.duedate, invoice.invoicenumber, invoiceitem.quantity,
invoiceitem.uom, invoiceitem.unitprice, invoice.balance, invoice.id
FROM invoice_item_cache.invoiceitem USE
INDEX(INVOICE_ITEM_CACHE.INVOICE_ITEM_SUBSCRIPTIONID_ASC_IDX)
INNER JOIN invoice_cache.invoice ON invoice.id = invoiceitem.invoiceid
JOIN TABLE(id varchar = ('123')) s ON s.id = invoiceitem.subscriptionid
WHERE invoice.balance = 0
AND invoiceitem.uom = 'Session'
AND invoice.duedate < sysdate
AND invoice.invoicedate < sysdate
AND invoice.reversed <> true
AND (invoiceitem.chargename = 'Personal Training Fee' OR
invoiceitem.chargename LIKE 'Personal Training Fee%')
GROUP BY invoice.id ORDER BY invoice.duedate

http://invoice.id/
http://invoice.id/
http://s.id/
http://invoice.id/

34

APM Timings

35

__SCAN
Detection

36

Tuning yields big results and stabilizes
“The Grid”

37

“Long” Running Queries

38

Query History

39

Key Takeaways - Summary

Grid Gain can be use as a:
1. Key value object cache – jCache operations = fast data loading

2. SQL Queryable objects – runAttributesQuery = fast data access

3. System Of Record (SOR) – member club check in = file based database
replacement

4. Solution that future proofs your company (more on that tomorrow)

Questions
Q&A

41

Appendix – Useful links

• My 2017 IMC Summit presentation adds context/details related to this
presentation and our journey
https://www.imcsummit.org/2017/us/sessions/how-in-memory-solutions-can-
assist-saas-integrations

• Distributed joins, collocation, collocated queries and affinity
https://apacheignite-sql.readme.io/docs/distributed-joins

• Don’t over index:
https://apacheignite.readme.io/v1.8/docs/indexes#indexes-tradeoffs

• GridGain Software Editions
https://www.gridgain.com/products/software

• My 2019 IMC Summit Keynote presentation
https://www.imcsummit.org/2019/us/session/fitness-memory-computing-getting-ahead-
game

https://www.imcsummit.org/2017/us/sessions/how-in-memory-solutions-can-assist-saas-integrations
https://apacheignite-sql.readme.io/docs/distributed-joins
https://apacheignite.readme.io/v1.8/docs/indexes
https://www.gridgain.com/products/software
https://www.imcsummit.org/2019/us/session/fitness-memory-computing-getting-ahead-game

