
Enabling Java applications for low-latency use cases
at scale with Azul Zing and GridGain

Gil Tene
CTO & Co-Founder

Azul Systems

Denis Magda
VP, Product Management

GridGain Systems

2

10 Mins That Saved Southwest Airlines

3

Apps That Require Much Lower Latency

Payments Processing

Latency: 20 - 200 ms

Electronic Trading

Latency: 20 - 100s μs

4

Garbage Collection Might Make Things
Unpredictable

5

Unless You Select The Right Java Stack

Azul Zing - Java without the pauses

Click to add text

©2017 Azul Systems, Inc.

An overview of Zing

Gil Tene, CTO & co-Founder, Azul Systems

©2017 Azul Systems, Inc.

This is <Your App> on HotSpot

This is <Your App> on Zing

Any Questions?

A simple visual summary

©2015 Azul Systems, Inc.

A JVM for Linux/x86 (servers, clouds, containers)

“Not just Fast. Always Fast.”

Improves application behavior metrics

Increases practical carrying capacity

Makes developers and their managers happier

Delivers a continuously responsive execution platform

ELIMINATES Garbage Collection as a concern

Reduces negative impacts of frequent code deployment

VERY wide operating range

from GBs to TBs, from low latency to streaming and batch

Zing

©2017 Azul Systems, Inc.

Areas where Zing shines

Wherever speed & responsiveness
matter:

Human response times…

Machine-to-machine “stuff”…

“Low latency” or “Latency Sensitive"…

“Large” data and in-memory analytics…

©2017 Azul Systems, Inc.

Zing shines in
Java based infrastructure…

Cassandra
Solr

Elastic

LuceneKafka

HBase Zookeeper
Flink

Pinot

…

…

…

Aeron

…

Spark

……

…

GridGain
Ignite

HDFS

…

Storm

…

©2017 Azul Systems, Inc.

Zing shines in Java applications

API Gateways Application
containers

Back end

Front End

In memory
analytics

…

…

Streaming
applications

…
…

… …

…

©2017 Azul Systems, Inc.

Zing’s main feature areas

C4: GC, solved.

Falcon: Powerful JIT compiler.
Speed.

ReadyNow: Warmup/Startup. DevOps.

Speed

What is it good for?

©2017 Azul Systems, Inc.

Are you fast?

©2017 Azul Systems, Inc.

Are you fast when new code rolls out?

©2017 Azul Systems, Inc.

Are you fast when it matters?

©2017 Azul Systems, Inc.

Are you fast at Market Open?

©2017 Azul Systems, Inc.

Are you reliably fast?

©2017 Azul Systems, Inc.

??

What does being “fast” mean?

©2017 Azul Systems, Inc.

What does being “fast” mean?

Speed in the Java world…

©2017 Azul Systems, Inc.

Interpreted

Tier 1
(profiling) Optimized

©2017 Azul Systems, Inc.

©2017 Azul Systems, Inc.

©2017 Azul Systems, Inc.

Falcon

Falcon is basically about speed

©2017 Azul Systems, Inc.

FalconReadyNow

ReadyNow is focused on warmup

©2017 Azul Systems, Inc.

FalconReadyNow

C4

C4 takes out the stalls

©2017 Azul Systems, Inc.

FalconReadyNow

C4

Start Fast, Go Fast, Stay Fast

©2015 Azul Systems, Inc.

GC Tuning

©2015 Azul Systems, Inc.

Java GC tuning is “hard”…

Examples of actual command line GC tuning parameters:
Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g

-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …

A few more GC tuning flags

Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”

©2015 Azul Systems, Inc.

The complete guide to
modern GC tuning**

java -Xmx40g
java -Xmx20g
java -Xmx10g

java -Xmx5g

** It’s 2019, Zing is widely available. Tweaking 10s of GC flags is a thing of the past.

©2017 Azul Systems, Inc.

Cassandra under heavy load, Intel E5-2690 v4 server

Yup, that’s the 1 msec mark

A real world use case with In Memory Computing:

GridGain in a Credit Card payments processing application

36

Payments Benchmark: Configuration

! 3 nodes GridGain cluster
○ 3 x AWS i3en.6xlarge
○ 72 cores
○ 600 GB RAM and 45 TB disk

! Tested Scenarios
○ Azul Zing C4 vs. OpenJDK G1 for
○ 100% in RAM, no disk (200 GB)
○ 100% in RAM, 100% on disk (200 GB)
○ 30% in RAM, 100% on disk (600 GB)

37

Payments Benchmark: Workload

! Each transactions accesses 20 records
! Distributed Transactional Reads

○ Target throughput - 1000 reads/sec
○ Target latency - 15ms for 99.99th percentile

! Distributed Transactional Updates
○ Target throughput - 2000 updates/sec
○ Target latency - 50ms for 99.99th percentile
○ RAM and disk have to be updated for primary and backup copies

! Metrics Collection
○ Micrometer and jHiccup
○ 2 hours run

38

Transactional Reads
100% in RAM (200 GB)

39

Transactional Reads
100% in RAM (200 GB) [equalized scale]

40

- target latency

Transactional Reads
100% in RAM (200 GB) [equalized scale]

41

Transactional Updates:
100% in RAM (200 GB)

42

Transactional Updates
100% in RAM (200 GB) [equalized scale]

43

- target latency

Transactional Updates
100% in RAM (200 GB) [equalized scale]

44

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB)

45

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

46

- target latency

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

47

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB)

48

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

49

- target latency

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

GridGain - In-Memory Computing Platform That Scales

Click to add text

51

GridGain Let’s Us Scale To Terabytes
Across RAM and Disk Space

Unlimited off-heap memory
and disk space for data

Java Heap for objects
generated in runtime

52

Transactional Persistence

! Distributed Persistence Tier
○ Fully transactional and consistent
○ No need to cache 100% of data in RAM
○ No need to warm-up RAM on restarts

! Performance vs. Cost Tradeoff
○ Cache more for fastest performance
○ Cache less to reduce infrastructure costs

53

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB)

54

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

55

- target latency

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

56

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB)

57

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

58

- target latency

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

59

Is Java Ready for Low-Latency Scenarios?

! Eliminate GC pauses with Azul
Zing

! Scale Out with GridGain across
RAM and Disk

! Select a configuration you need
to meet infrastructure costs

60

Q&A

Gil - @giltene

Denis - @denimagda

