

Best Practices For Loading Data To Distributed Systems With Change Data Capture

Alexey Goncharuk

Change Data Capture In The Wild

Agenda

- What is CDC?
- What can I do with CDC?
- What is available in Ignite / GridGain?

What is CDC?

What is Change Data Capture

- Have a data set or arbitrary size
- Determine what records changed since a given moment
- Many ways to achieve this...

What Is CDC?

Record Change Markers

- Timestamps
- Versions
- Statuses
- Attached to application data model

ID	 UPDATE_TS
1	2019-10-10 00:01:02.000
2	2019-10-09 11:01:02.000
3	2018-10-09 18:36:13.000
4	2019-09-01 01:02:03.000
10	2019-06-13 11:12:04.000

ID	 UPDATE_TS
1	2019-10-10 00:01:02.000
2	2019-10-09 11:01:02.000
3	2018-10-09 18:36:13.000
4	2019-11-01 23:59:59.000
10	2019-11-15 14:00:00.000

ID	 UPDATE_TS	
1	2019-10-10 00:01:02.000	
2	2019-10-09 11:01:02.000	
3	2018-10-09 18:36:13.000	
4	2019-11-01 23:59:59.000	4
10	2019-11-15 14:00:00.000	4

SELECT * FROM Table WHERE UPDATE_TS > ' 2019-11-01 00:00:00.000'

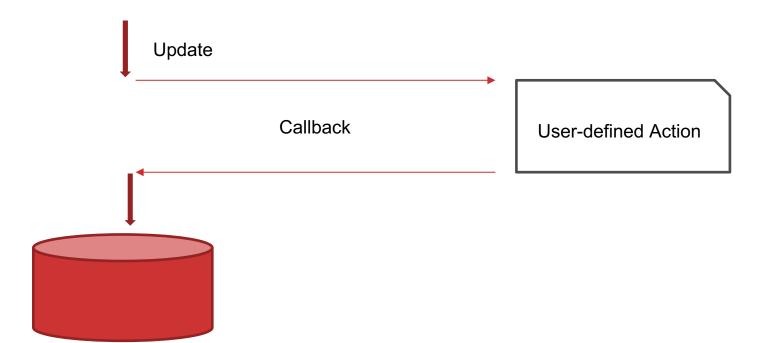
Cons

- Detecting changes is tricky
 - o Full scan
 - Additional index for change markers
- No previous value (change coalescing)

Pros

- May be implemented in application layer
- Delayed change consumption
- Negligible storage overhead

What Is CDC?



Callbacks

- Triggers / interceptors / etc...
- User code is supplied to the storage system

Callbacks

Callbacks

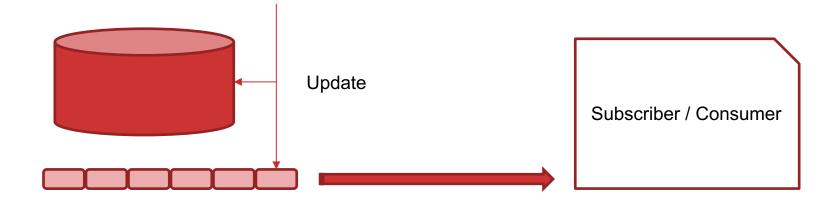
Cons

- Invoked synchronously
- Tricky failover in distributed systems

Callbacks

Pros

- No system storage/insert overhead
- Previous value is usually available
- May have an ability to modify updated value


What Is CDC?

Change Feed

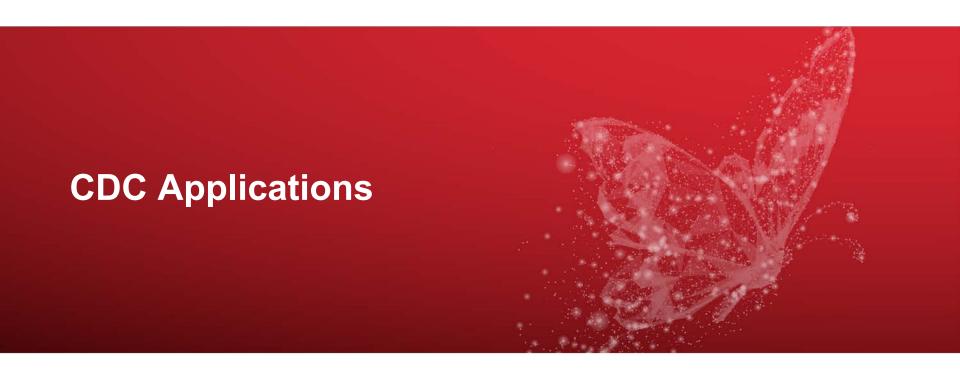
- Changes are stored as events (Event Sourcing)
- Or changes produce events
- Consumers subscribe to a change feed
- Database WAL is an events source!

Change Feed

Change Feed

Cons

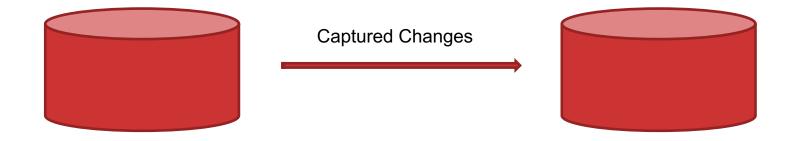
Need additional storage to keep changes



Change Feed

Pros

- Previous values are usually available
- Full change history is preserved
- Possibly an ability to re-read the history


Continuous Data Integration

- "Active" database produces changes
- The changes are applied to a secondary system

Continuous Data Integration

Continuous Data Integration

- Reads offload
- Audit Changelog
- Cross-system Replication
- High Availability

Running function calculation

- Computationally expensive function over a large set of items?
- Calculate once, then apply deltas

Running function calculation

- AVG (ITEMS) = SUM (ITEMS) / COUNT (ITEMS)O(N) Complexity
- On insert => SUM += New Value, COUNT += 1
- On delete => SUM -= Deleted Value, COUNT -= 1
- On update => SUM = SUM Old Value + New Value
- Average is a O(1) operation

Cross-System Active-Active Replication

- Updates feed is going both ways
- Need to resolve conflicts
- Conflict-free Replicated Data Types (CRDTs) for help

Basic CRDTs

- Grow-only counter
- Positive-negative counter
- Grow-only set
- Two-phase set
- Last-write-wins
- •

Applying Changes To Ignite

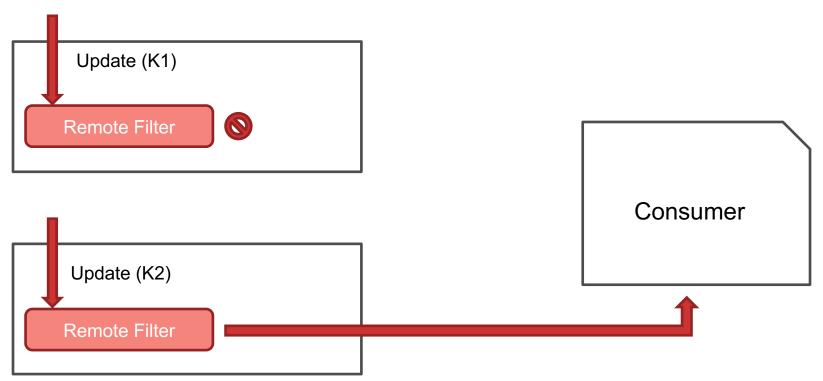
- IgniteDataStreamer to optimally deliver changes to data nodes
- A user can use custom stream receiver
- Out-of-the-box integrations
 - Kafka
 - MQTT
 - ...

Callbacks

- CacheInterceptor
 - Guarantees update order
 - May alter inserted value
 - o Synchronous, may affect performance

Callbacks

- Cache Events
 - o Guarantee update order
 - o Asynchronous



Callbacks And Change Feed Combined

- ContinuousQuery
 - Client server subscription
 - o Remote filter acts as a synchronous callback
 - o Local listener acts as a sink

Callbacks And Change Feed Combined

- Automatic failover in case of primary node crash
- Single-key ordering guarantees

- Ingestion
 - IgniteDataStreamer
- Capturing Changes
 - CacheInterceptor
 - Events
 - ContinuousQuery

Summary

- CDC is a powerful and a well-known technique
- Many systems have built-in support for CDC
- May improve both development time and performance

Apache Ignite

Want To Contribute?

- dev@ignite.apache.org
- agoncharuk@apache.org

Q&A

Thank you for your attention!

