
Build and Deploy Digital Twins on an
IMDG for Real-Time Streaming Analytics

Dr. William L. Bain, Founder & CEO
ScaleOut Software, Inc.
November 13-14, 2019

‹#›

About the Speaker

Dr. William Bain, Founder & CEO of ScaleOut Software:
• Email: wbain@scaleoutsoftware.com
• Ph.D. in Electrical Engineering (Rice University, 1978)
• Career focused on parallel computing – Bell Labs, Intel, Microsoft
• 3 prior start-ups, last acquired by Microsoft and product now ships as Network Load

Balancing in Windows Server

ScaleOut Software develops and markets In-Memory Data Grids, software for:
• Scaling application performance with

in-memory data storage
• Operational intelligence: analyzing live

data in real time with in-memory computing
14+ years in the market; 450+ customers, 12,000+ servers

‹#›

Agenda

• Goals and challenges for stream-processing
• What are real-time digital twins? Why use them?
• Advantages in comparison to traditional approaches
• Target use cases
• Using in-memory computing to host digital twins
• New APIs designed for building digital twins & code sample
• Implementing digital twin models on an in-memory data grid (IMDG)
• Deploying real-time digital twin models in a cloud service
• Demo

‹#›

Goals of Stream-Processing

Goal: maximize situational awareness & real-time control
How:
• Process incoming data streams from many thousands of devices.
• Analyze events for patterns of interest.
• Provide timely (real-time) feedback and alerts.
• Provide aggregate analytics to identify patterns.

Many applications in IoT and beyond:
• Medical monitoring
• Logistics & manufacturing
• Disaster recovery & security
• Financial trading & fraud detection
• Ecommerce recommendations

Event Sources

‹#›

Quick Example: Medical Refrigerators

Cloud-based streaming service
monitors 7000+ medical refrigerators:
• Refrigerators hold highly important

tissue samples, embryos, etc.
• Service receives periodic telemetry:

• Temperature
• Power consumption
• Door position, etc.

• Must predict failure before it occurs:
• Notify user to migrate contents to

another refrigerator.
• Avoid false positives.
• Identify widespread power outages.

‹#›

Challenges for Stream Processing

Popular software platforms (Flink, Storm, Beam) are pipeline-oriented.

Creates complexity challenges:
• Difficult to: correlate events by each data source, track state, embed analytics

Creates performance challenges:
• Difficult to: respond with low latency, scale for thousands of data sources

Requires aggregate analytics to be performed offline.

‹#›

Typical Approach: Lambda Architecture

Adds complexity to applications that provide real-time analytics:
• Separates real-time processing (“speed layer”) from data-parallel

analytics (“batch layer”).
• Allows only rudimentary analysis

and response in real time.
• Defers aggregate analysis

to offline processing (e.g.,
Spark, database query).

• Limits real-time introspection.
Is there a better approach? https://commons.wikimedia.org/w/index.php?curid=34963987

‹#›

Real-Time Digital Twins

A new software technique for stream-processing:
• Automatically correlates telemetry from each device or data source.
• Tracks dynamic state for each data source.
• Provides a software framework for hosting application logic (e.g., rules, ML).
• Enables real-time aggregate analysis in place.

‹#›

Other Uses of the Term “Digital Twin”

• Created by Michael Grieves for product design and life cycle management
(PLM); popularized by Gartner:
• A virtual version of a physical entity
• Also, context to interpret telemetry

streaming back from the field

• Also:
• AWS device shadow: cloud-based repository for per-device state information with

pub/sub messaging
• Azure IoT device twin: JSON document that stores per-device state information

(metadata, conditions)
• Azure digital twin: spatial graph of spaces, devices, and people for modeling

relationships in context

• These uses are not for real-time stream processing.

‹#›

Anatomy of a Real-Time Digital Twin

A real-time digital twin model describes how to process incoming events
from a specific type of data source (e.g., a wind turbine).
• Consists of a message processor method and a state object definition:
• Message processor:

• Receives and analyzes events and commands.
• Encapsulates analysis algorithm.
• Generates alerts and outbound device messages.

• State object holds dynamic, per-device data:
• Dynamic context for analyzing events
• Also: time-ordered event lists, cached parameters
• One instance per data source (device)

‹#›

Comparison: Two Types of Digital Twins

A real-time digital twin is not a PLM model of a physical device:
PLM Digital Twin Real-Time Digital Twin

Goal: Aid in product development. Goal: Aid in real-time streaming analytics.

Models characteristics and behavior of a
physical device (simulation model).

Analyzes telemetry streams from a physical
device & generates feedback and alerts.

Proactively generates outputs over time and
accepts inputs.

Reactively processes telemetry messages and
commands.

Implements dynamic state that models device
behavior.

Implements dynamic state that adds context
to help interpret telemetry.

Example: digital twin for a medical refrigerator:

Models door open/close events, temperature
changes over time, power fluctuations, etc.

Analyzes incoming events based on
maintenance history, usage, and condition.

‹#›

Advantages of Real-Time Digital Twins

Simplifies application design:
• Provides automatic event correlation and access to per-device state.
• Uses an object-oriented approach to encapsulate state and behavior.

Enables deeper introspection in real time:
• Dynamically tracks state

of each device to help
analyze incoming events.

• Provides orchestration
for analytics code (e.g.,
rules engine, ML).

• Enables integrated,
aggregate analysis.

Runs well on IMDGs.

‹#›

Simplifies Application Design

State-centric approach (vs. event-centric):
• Avoids event correlation

in the application.
• Avoids need for

ad hoc state storage.
• Encapsulates analysis

logic in one place.
• Provides automatic

domain for aggregate
analysis.

‹#›

Digital Twins Can Access Historical State

• Digital twins store dynamic
state information in memory for
fast access.

• Also can retrieve slowly-
changing data from a database:
• Device parameters
• Maintenance history

• Can update database:
• Event-message history
• Significant changes to the device

‹#›

Enables Aggregate Analysis

Real-time digital twins create a natural domain for data-parallel analysis:

‹#›

Aggregate Analysis with MapReduce

A well-known, data-parallel technique:
• Aggregates property values across

all instances of a model.
• Allows results to be grouped

according to the value of another
property.
• Example: Ave. vehicle speed by county

• Runs seamlessly within an IMDG:
• Runs concurrently with event processing.
• Avoids network bottlenecks.
• Avoids delay for offline processing.

MapReduce Data Flow

Digital twin state objects

Aggregated results

‹#›

Also Enables Telemetry Filtering

Real-time digital twins can filter events for offline analysis in the data lake:

‹#›

Avoids Network Bottlnecks

• State-centric approach distributes events across state objects.
• Avoids network bottleneck accessing remote data store from event pipeline.

• Network bottlenecks prevent scalable throughput.

‹#›

Leverages In-Memory Computing

• State objects can be hosted within an in-memory data grid (IMDG).
• IMDG delivers event messages to state objects and runs message processor.
• IMDG can perform data-parallel analysis in place across state objects.

Data-parallel analysis

‹#›

IMDG Delivers Fast, Scalable Performance

In-memory data grid:
• Processes event message

in 1-2 milliseconds.
• Performs typical data-

parallel analysis in
~1-5 seconds.

• Transparently scales
to handle 100,000+
digital twin instances.

‹#›

Target Use Cases for Digital Twins

• Useful in applications which require fast response times and
situational awareness

• Benefit from real-time
aggregate analysis

• Examples:
• Health tracking
• Disaster recovery
• Security monitoring
• Fleet management
• Ecommerce

recommendations
• Fraud detection

Example: Telemetry and Feedback
from Wearable Devices

‹#›

Real-Time Health Tracking

Digital twins analyze telemetry from
health-tracking devices to help
ensure safety (predict events):
• Digital twins receive periodic

messages with key metrics (heart
rate, blood oxygen, etc.).

• State objects track person’s health
history, medications, limitations,
recent medical events.

• Analysis algorithm can integrate
dynamic, aggregate results from
large populations.

‹#›

Disaster Recovery

Digital twins analyze telemetry from
sensors to determine scope of an
incident in real time.
Example: intelligent fire alarm
system
• Analysis of sensor telemetry

indicates probable or impending
fire.

• Aggregate analysis of multiple
sensors indicates path & extent
of fire.

• Enables intelligent evacuation
strategy.

‹#›

Security Monitoring

• Intrusion sensors analyze
telemetry to predict unauthorized
access at each location.

• Aggregate analysis of
perimeter sensors indicates
scope of threat.

• Enables focused, real-time
response to all critical locations.

‹#›

Large Scale Fleet Tracking

• Real-time tracking for a
car/truck fleet
• 100K+ vehicles

• Immediately responds
to issues with individual
vehicles:
• Lost driver, engine

failure, etc.
• Detects & responds to

regional issues within
seconds
• Weather delays,

highway blockages
• Redirects drivers.

Fleet-Tracking Application

‹#›

Ecommerce Recommendations

• Ecommerce site may have 100k+
shoppers, each generating a
clickstream.

• Digital twin for each shopper:
• Maintains a history of clicks, shopper’s

preferences, and purchasing history.
• Analyzes clicks to create new

recommendations in real time.

• Aggregate analysis:
• Determines collaborative shopping

behavior, basket statistics, etc.
• Enables targeted, real-time flash sales.

‹#›

Building and Deploying Digital Twins

• Step 1: Build a digital twin
model and deploy to the
IMDG:

• Step 2: Connect the IMDG to
a message hub (e.g., Azure
IoT Hub, AWS IoT, Kafka,
REST, etc.):

‹#›

Why Use Specific APIs for Digital Twins?

• Simplifies application design; avoids complexity of underlying IMDG
APIs, including:
• Explicitly managing and accessing state objects in the IMDG
• Orchestrating the staging of message-processing code across the IMDG
• Connecting digital twins to data sources
• Delivering messages to digital twins and back to data sources
• Ensuring highly available message handling

• Digital twin APIs and services allow the application to focus on:
• Defining message-processing code for each type of data source
• Defining the dynamic state information to be managed for each data source
• Describing periodic data-parallel analytics to be performed across all digital twins

of a given type

‹#›

Digital Twin Builder APIs

• Application implements a message processor method:

ProcessMessage(stateObject, processingContext, messageList)

• Application defines state object to hold instance properties and optional
event lists.

• Processing context defines APIs for sending messages to data source or
to other twins.

• Message list contains set of messages that arrived since last call to
ProcessMessage.
• Hides latency by handling multiple messages at once.
• Enables single acknowledgment for a group of messages.

‹#›

Deployment APIs

• Deploy model to IMDG:

builder = new ModelBuilder()
.AddDependency(“code.dll”)
.AddModel<stateObjectType,

messageProcessorType,
eventMessageType>()

.Build();

• Deploys model’s code to the IMDG.
• Starts message processing.
• Automatically creates a digital twin instance for each new data source id.

‹#›

Connecting to a Message Hub

• Typical message hubs: Azure IoT Hub, AWS IoT, Kafka, REST
• A connector creates a message path to/from the IMDG and a hub:

connector = new XYZConnectionManager(name, connParameters);

• Authenticates connection to the message hub.
• Awaits messages from data sources.

• Uses multiple listeners if supported by the hub.

• Forwards messages to digital twin instances
or creates an instance for a new data source.

• Manages acknowledgments for high availability.

In-Memory Data Grid

‹#›

Code Sample: Wind Turbine Digital Twin

Goal: Analyze temperature telemetry from a wind turbine.
• Digital twin state object tracks:

• Parameters: model, pre-maintenance period based on model, max. allowed temperature,
max. allowed over-temp duration (normal and pre-maintenance)

• Dynamic state: time to next maintenance, over-temp condition and its duration

• Message processor:
• Determines onset of and recovery from over-temp condition.
• Alerts at maximum allowed duration; logs incidents for time-windowing analysis.

Block Island Wind Farm

‹#›

Sample State Object (C#)
[JsonObject]
public class WindTurbine : DigitalTwinBase
{

// physical characteristics:
public const string DigitalTwinModelType = "windturbine";
public WindTurbineModel TurbineModel { get; set; } = WindTurbineModel.Model7331;
public DateTime NextMaintDate { get; set; } = new DateTime().AddMonths(36);
public const int MaxAllowedTemp = 100; // in Celsius
public TimeSpan MaxTimeOverTempAllowed = TimeSpan.FromMinutes(10);
public TimeSpan MaxTimeOverTempAllowedPreMaint = TimeSpan.FromMinutes(2);

// dynamic state variables:
public bool TrackingOverTemp { get; set; }
public DateTime OverTempStartTime { get; set; }
public int NumberMsgsWithOverTemp { get; set; }

// list of incidents and alerts:
public List<Incident> IncidentList { get; } = new List<Incident>();

}

‹#›

Sample Message Processor (Outer Loop)
public override ProcessingResult ProcessMessages(ProcessingContext context,

WindTurbine dt, IEnumerable<DeviceTelemetry> newMessages)
{

var result = ProcessingResult.NoUpdate;

// determine if we are in the pre-maintenance period for this wind turbine model:
var preMaintTimePeriod = _preMaintPeriod[dt.TurbineModel];
bool isInPreMaintPeriod = ((dt.NextMaintDate

- DateTime.UtcNow) < preMaintTimePeriod) ? true : false;

// process incoming messages to look for over-temp condition:
foreach (var msg in newMessages) {

// if message reports a high temp indication, track it:
if (msg.Temp > WindTurbine.MaxAllowedTemp)

<track over-temp condition>
else if (dt.TrackingOverTemp)

<resolve over-temp condition>
}
return result;}

‹#›

Track/Resolve Over-temp Condition
// track over-temp condition:
{dt.NumberMsgsWithOverTemp++;

if (!dt.TrackingOverTemp) {
dt.TrackingOverTemp = true; dt.OverTempStartTime = DateTime.UtcNow;
<add a notification to the incident list> }

TimeSpan duration = DateTime.UtcNow - dt.OverTempStartTime;

// if we have exceeded the max allowed duration for an over-temp, send an alert:
if (duration > dt.MaxTimeOverTempAllowed ||

(isInPreMaintPeriod && duration > dt.MaxTimeOverTempAllowedPreMaint)) {
var alert = new Alert(); <fill out the alert message>;
context.SendToDataSource(Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(alert)));
<add a notification to the incident list> }}

// resolve the condition and reset our state:
{dt.TrackingOverTemp = false; dt.NumberMsgsWithOverTemp = 0;
<add a notification to the incident list> }

‹#›

Deploy the Model and Connect to a Hub

• Deploy the wind turbine model:
ExecutionEnvironmentBuilder builder = new ExecutionEnvironmentBuilder()

.AddDependency(@"WindTurbine.dll")

.AddDigitalTwin<WindTurbine, WindTurbineMessageProcessor,
DeviceTelemetry>(WindTurbine.DigitalTwinModelType);

• Connect to Azure IoT Hub:

EventListenerManager.StartAzureIoTHubConnector(
eventHubName : _eventHubName,
eventHubConnectionString : _eventHubConnectionString,
eventHubEventsEndpoint : _eventHubEventsEndpoint,
storageConnectionString : _storageConnectionString,
consumerGroupName : "");

‹#›

How an IMDG Stores Data & Runs Code

IMDG transparently scales data
storage and method execution
across multiple servers:
• Stores serialized objects in a

Data Grid.
• Runs methods in an Invocation

Grid.
• Each IG Worker process:

• Hosts a language-specific runtime.
• Processes requests and accesses

objects from its co-located Grid
Service process.

Data Grid

Invocation Grid

Server 1 Server 2 Server 3

‹#›

How an IMDG Runs Digital Twin Models

• Digital twin instances are hosted
as objects in the Data Grid.

• Digital twin models run in an IG
called the Worker Grid.

• Connectors run in an IG called
the Connector Grid.

• Connectors invoke message
processor on the server hosting
the device’s instance object.
• Steers messages to object by id.
• This minimizes network overhead. In-Memory Data Grid

Scale

Message Hub

‹#›

Deploying a Digital Twin to the Cloud

Preview of a UI for a
cloud service that hosts
digital twins:
• Model is first created

using APIs.
• UI uploads code

from a resource file.
• UI selects language

runtime, such as
Java, C#,
JavaScript.

‹#›

Deploying a Connector to the Cloud

Connectors can be
created by
specifying the hub
type and connection
parameters:

‹#›

Managing Digital Twin Models in the Cloud

Each model can be
independently
managed to check
status and restart as
necessary:

‹#›

Examining a Digital Twin Instance

The properties for each
digital twin instance
(i.e., for each device)
can be examined:

‹#›

Collecting Aggregate Statistics

“Widgets” can be
created for digital
twin models to
display aggregate
statistics:
• Performs periodic

MapReduce on
selected state
properties.

• Runs every few
seconds.

‹#›

Demo: Power-Grid Status Tracking

Goal: Maximize situational
awareness for grid managers.
• Tracks state of 43K simulated

nodes in a power grid with real-
time digital twins.
• Tracks history and characteristics

of each node.
• Generates an assessment of

alert level.
• Identifies immediate threats

using real-time, aggregate
analytics.
• Displays alert level by region.
• Refreshes every 5 seconds.

‹#›

Takeaways

• Real-time stream-processing is challenging.
• Traditional approach (Lambda Architecture) limits real-time processing

and cannot perform aggregate analysis in real time.
• Real-time digital twins offer a breakthrough:

• Deeper introspection in real time
• Simplified application design
• Fast, scalable performance

• Enable vastly improved
situational awareness and
response.

• In-memory data grid provides a
fast, scalable execution platform.

