
An In-Memory Technology’s
Journey to the Cloud

Huseyin BABAL

Software Development Team Lead, Hazelcast Cloud

About me
Currently Implementing Hazelcast Cloud

Ex-Sony and Ex-eBay Engineer (DevOps & Microservice Transformation Project

Architect)

Regularly Talk & Do Workshops about all the stuffs I know on public events

Outline
● Infrastructure Abstraction

● Control / Data Plane

● Resource Management

● Persistence

● Monitoring

● Access Management

Infrastructure Abstraction

Cloud Provider Challenges
Having different restriction on each cloud provider introduces a big challenge while

you are creating a product. Terms are different, resource creation strategy is different,

managing the identities are different, etc....

What to do for eliminating those obstacles?

Kubernetes
Open-source container orchestration system for managing application deployment,

scaling, etc…

Kubernetes does not create your infra, it needs VMs at least to form a cluster.

All well-known cloud providers has Kubernetes as a Service

Abstraction with Kubernetes
Service[type=LoadBalancer] => creates load balancer

PVC => creates volume/disk

Helm => Unified application dependency management

Control / Data Plane

Control plane

billing
service

cluster
service

metric
worker

notification
service

auth
service

payment
worker

customer
service

metadata
service

Control Plane
This is the place where you orchestrate your SaaS system, and it can;

● do business validation before creating actual resources on k8s

● connect any kind of k8s destination defined within control plane database

● consume metrics and take action based on criterias like scale up when memory >

80%

Data plane

auth
serviceSoftware Software Metric Collector

Backup Handler

Kubernetes Events

Software Software

Node
Exporter

Node
Exporter

Node Exporter

Node Pool: Software

Node Pool: Tools

Data Plane
Data Plane is responsible for handling provided service workload.

● It primarily contains Software within SaaS

● It may contain internal agents for management and monitoring purposes

● It may have public or private network topology

● It may contain different node pools for different purposes.

Application Deployment
Use helm to package your application with its possible configuration options to make

an easy deployment

Implement operator of your application if you think custom resources are needed for

your application to manage its state successfully

Resource Management

Know Your K8s Node Limits
When you create a cluster on EKS, AKS, or GKE they actually spin up VMs on the

background and they reserve certain amount of resource of that VMs for their internal

usages.

If customer select 16G cluster, you cannot just use 2 m5.large on the background to

install on top of that.

Know Your K8s Node Limits
What if you have use following machines for 3 different cloud providers;

AWS Azure GCP

M5.large (8G, 2 CPU) D2 v3 (8G 2CPU) n1-standard-2 (7.5 G, 2 CPU)

100M Hard Eviction
Threshold

7G Usable memory
for Pods

700M OS+Kubelet

750M Hard Eviction
Threshold

5.4G Usable
memory for Pods

1.8G OS+Kubelet

100M Hard Eviction
Threshold

5.6G Usable
memory for Pods

1.7G OS+Kubelet

Pod Resource Management
In SaaS services, customers request services and they pay for it. To provide qualified

service, there should be properly defined limit of an application inside kubernetes.

Applications are just workloads inside k8s and you can define requests / limits for them

Requests / Limits
Requests is for saying “How much memory / cpu needed” for this application.

Limits is for saying “Up to how much memory / cpu can be used” by this application.

Persistence

Real Challenge
We say in-memory, but what is this persistence?

In-memory techs may provide a way to persist in-memory data to disk on demand.

In a distributed system, it is the real challenge.

With Managed File Store Service

N1

N2

N3

Managed File Store
Service

/N1

/N2

/N3

PVC

PVC

PVC

Without Managed File Store Service

N1

N2

N3

Object Storage

/bucket/cluster/N1

/bucket/cluster/N2

/bucket/cluster/N3

Upload

Upload

Upload

Motivation of Persistence
● Taking Snapshot of cluster data at time T

● Restore from snapshot in for disaster recovery

● Let customer to clone a cluster by creating new cluster and provide snapshot data

during cluster startup

Persistence Components
● There is a daemonset to have a uploader agent on every node to upload data for

snapshot operations

● There is a daemonset to have a downloader agent on every node to download data

in advance for restore or clone operations

● Since those agents within same node with actual technology you provide, they

must be as tiny as possible

● Best practice to use workload identity for agents to be able to access object

storage without any kind of credentials

Monitoring

Prometheus

*https://www.slideshare.net/QAware/cloud-monitoring-with-prometheus

Monitoring
● Prometheus for monitoring to collect metrics from targets

● Implement your own metric exporter to be scraped by Prometheus

● Define Prometheus Rules to let AlertManager to send notifications

● Introduce a central monitoring system to handle metrics coming from different

clusters in one place

● Use Thanos to have scalable monitoring system

Monitoring Multi-Cluster

T-sidecar T-sidecar T-sidecar

Thanos Receiver

Thanos Querier

Object Storage (S3)

Thanos Storage
Gateway

Alert Rules
Through Thanos Querier, you can get built-in metrics and custom ones. By using those

metrics, you can also trigger alerts like;

● If used_memory > 80 then fire alarm to notify customer

● If used_memory < 40 then fire alarm to scale down

● If used_memory > 90 then fire alarm to scale up

Inside prometheus operator, you can find custom resource PrometheusRule

Access Management

Network Topologies
According to business needs, you may want to setup cluster in a private or public

network.

On all cloud providers, they provide network topology type to put k8s in desired

network type.

Accessing public cluster is ok, but private one is a bit challenging

Service Exposal with NodePort

N1

N2

N3

NodePort

NodePort

NodePort

Service Exposal with LoadBalancer

N1

N2

N3

LoadBalancer

Service Exposal with NodePort as LoadBalancer

N1

N2

N3

LoadBalancer

LoadBalancer

LoadBalancer
M
e
t
a
C
o
n
t
r
o
ll
e
r

Service Discovery
In modern world, you shouldn’t depend on static hostnames, if you are inside k8s, you

can listen events to detect scheduled pods to get ip address of physical machines.

To connect members, user needs to hit discovery endpoint with cluster id to get

member ip addresses

Private Clusters
It is easy to connect to cluster which is inside k8s cluster that has public network

topology.

What about private ones?

Private Cluster

N1

N2

N3

NodePort

NodePort

NodePort

Peering Scenario
● In Console UI, customer get pre-generated cli command

● Initiates VPC Peering on customer side

● CLI prompts necessary parameters like VPC ID, Subnet, etc…

● It creates VPC Peering connection on customer side and sends request to Control

Plane to create same records to your system to verify

Cloud Specific Peering Terms
I

n AWS, you can also use Private Link to convert your service into a VPC Endpoint

Service. It is also best practice for enabling your service in AWS Marketplace

AWS Azure GCP

Name VPC Peering vNet Peering VPC Network
Peering

Requested
Parameters

Account ID
VPC ID
Subnet ID

vNet ID Project ID
Network Name

VPC Peering

N1

N2

N3

NodePort

NodePort

NodePort

Customer
Account

VPC Peering

Any Question?

/huseyinbabal
/huseyinbabal
 https://huseyinbabal.com

