
Transparently Scale-out SQL Databases
with Data Grids

Erik Brandsberg, CTO
Heimdall Data

1 Rolling Your Own Solutions
Considerations when implementing a cache & read/write split in your application

2 How Database Proxies Solves the Problems For You

Automated cache and read/write split driven by rules, not code

3 Live Demo & Q&A

Agenda

What are the Target Features

Caching
A cache is a high-speed data storage layer that stores a subset of data, typically
transient in nature, so that future requests are served up faster.

Read/Write Split

The act of dividing database statements into reads vs. writes. Read/write split allows
applications to leverage scaled-out databases and auto-scale load more easily.

Both together provide database scale-out functionality

At the surface, caching is simple:

• Create a key based on the request
• Serialize the result returned
• Store in the cache with the key
• Check if the key exists in the cache before requesting again from the source

BUT… it becomes complex very fast:

• When is the data invalidated?
• Is your cache adding latency on cache misses?
• Are you over-caching, and flushing objects that could provide a benefit?
• Have you accounted for the security context of the object (user permissions?)
• Debugging can be difficult

Rolling Your Own Cache
It can be done… Anything can be done, but should you?

Definition: Removing cached objects that may have been changed at the source of truth

Hints to make invalidation less painful:

• Classify content by broad categories, and invalidate on writes to the category, i.e. DB
tables instead of rows

• Use timestamps on the category to determine if something is stale
• Avoid walking the cache to evict objects--use TTL settings to do the bulk of the work and

only explicitly evict if a stale object was retrieved
• Broadcast category invalidations via a pub/sub interface to other nodes

IMDGs supports TTL based invalidation and pub/sub messages to facilitate invalidation

Invalidation
The hardest part of caching is knowing what to throw out

Network latency often overlooked and a critical component of data performance

Accessing the same data from a cache and DB often are the same speed

Hints to reduce the impact of latency:

• Avoid cache misses by tracking keys in the remote cache
• Avoid caching when a cache hit performs the same on the DB as the cache (and

adapt)
• Use local memory for frequently used objects
• Optimize serialization overhead--not all serialization schemes are created equal

Most IMDGs supports keyspace notifications to update nodes what keys are available,
use it!

Reduce Latency
A network hop is a hop, it doesn’t matter what it is to, the impact is the same

When caching, over-caching can reduce cache benefit by adding unnecessary overhead

Caching isn’t free-there is serialization overhead and memory tradeoffs

Hints to avoid over-caching:

• Limit the size of objects that can be cached (when appropriate) to avoid purging
memory of small objects that are more likely to be used

• Track the actual cache benefit based on invalidation category--if a category provides
no benefit, stop caching it

• Track invalidation frequency, if a category is invalidated too often, simply stop
caching that category (for a time)

More can be Less
Selective caching can improve performance overall

Cached data can expose critical data to intruders, or malicious employees

Leverage available identifiers as part of the cache key to prevent exposure

Hints on securing your cache:

• Lock down the cache to authorized users
• Include the user that accessed the data as part of the cache, at least by default
• Store objects only in local memory if unencrypted, and use TLS if stored over the

wire
• Encrypt the data on serialization if necessary
• Beware of serialization vulnerabilities that can trigger remote code issues

IMDGs generally include password login, TLS support, as well as on-disk encryption

Always Think Security
Are you bypassing your database security by caching?

Deceptively simple, just:

• Open two connections, one to the write node, one to a read node
• Send queries to the connection desired

But… is it that simple?

• Replication lag means a read following a write may not see the written data, SQL
Server may take a full second before exposing the written data

• Read after write is a common pattern, and broken by read/write split often
• Transaction logic complicates things more
• How to scale beyond a single read-only node?
• Increases the risk of failures by adding more DB nodes

Read/Write Split
Simple to do, difficult to master

• Replication lag can be estimated, or a simple “safe” value assumed, say 10s
• Cache invalidations on writes can be used to track the last write time to a table, but

requires cache invalidation logic to be in place
• Leverage the last write time to determine if it is safe to read from the read-only

server

There is no easy way to do this “right” without much of the cache logic already being in
place except for limited reference table lookups.

There is no easy way to do caching and read/write split

Read/Write split, Continued

Transparent Database Proxies

Feature Pg-Bouncer ProxySQL

Automated Failover

Read/Write split

Database Vendor Neutral

Automated Cache
invalidation

Reduces network latency

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

Database Proxy
Vendors

Amazon
ElastiCache

• Best scale & performance

• Greenfield applications

• Requires code changes

• “Good enough”

• Existing applications, small dev

• No code changes

ProxySQL

IMDG vs. Database Proxies

Pg-Bouncer

Heimdall Proxy Abstraction Layer

Application Server

SQL Auto-Caching
Auto-invalidation

Auto-Cache Refresh

Automated Failover
Load Balancing
Read/Write Split

Batch Processing
OLTP/OLAP Routing
Query Triggers

Query Analytics &
Transformation

Connection Pooling
and Multiplexing

Application Server

Heimdall
Data

Driver/Proxy
Application Server

Application
Heimdall

Driver/Proxy

Abstracting the hard parts away from the application

Application

Heimdall Data
Proxy

Vendor Database
Driver

Application Server

Runs as an
agent

Application

Heimdall Data
JDBC

Vendor JDBC
Driver

JDBC driver, .jar
file

Application Server

Any JDBC data source

Software Package Options

Heimdall
ProxyApplication

SQL SQL

Write

Read 1

Read 2

Read/Write Split with Replication Lag Detection

SQL CACHING AUTOMATED
FAILOVER

BATCHING
INSERTS

CONNECTION
POOLING

 READ/WRITE
SPLIT

ACTIVE
DIRECTORY

HEIMDALL DATABASE PROXY PLATFORM

APPLICATION

RDS, Redshift

Database Proxy Platform

Automated Caching and Read/Write Split by Rule

Live Demo

Three Demo applications are available on our website:

• Magento - Backed by MySQL

• Odoo - Backed by Postgres

• Wordpress – Backed by MySQL

Questions and Answers!

How Heimdall Proxy Works Live

For More Information

Please visit online at:

www.HeimdallData.com

Available on the AWS, Azure and CGP (soon) Marketplaces as well!

http://www.heimdalldata.com/

Thank you

