
@nicolas_frankel

A CDC use-case:
Designing an Evergreen
Cache
Nicolas Fränkel

@nicolas_frankel

Me, myself and I

§ Former developer, team lead, architect,
blah-blah

§ Developer Advocate
§ Interested in CDC and data streaming

@nicolas_frankel

Hazelcast

HAZELCAST IMDG is an operational,
in-memory, distributed computing
platform that manages data using
in-memory storage and performs
parallel execution for breakthrough
application speed and scale.

HAZELCAST JET is the ultra fast,
application embeddable, 3rd
generation stream processing
engine for low latency batch and
stream processing.

@nicolas_frankel

Agenda

1. Why cache?

2. Alternatives to keeping the cache in sync

3. Change-Data-Capture (CDC)

4. Debezium, a CDC implementation

5. Hazelcast Jet + Debezium

6. Demo!

@nicolas_frankel

The caching trade-off

§ Improved performance/availability

§ Stale data

@nicolas_frankel

The initial state

1. The application
2. The RDBMS
3. The cache

@nicolas_frankel

Aye, there’s the rub!

§ A new component
writes to the
database

§ E.g.: a table holding
references needs to
be updated every
now and then

@nicolas_frankel

How to keep the cache in sync with the DB?

@nicolas_frankel

Cache invalidation

“There are two hard things in computer
science:

1. Naming things

2. Cache invalidation

3. And off-by-one errors”

@nicolas_frankel

Cache eviction vs Time-To-Live

§ Cache eviction: which entities to evict
when the cache is full

• Least Recently Used
• Least Frequently Used

§ TTL: how long will an entity be kept in
the cache

@nicolas_frankel

Choosing the “correct” TTL

§ Less frequent than the update frequency

• Miss updates

§ More frequent than the update frequency

• Waste resources

@nicolas_frankel

Polling process

Same issue regarding the frequency

@nicolas_frankel

Event-driven for the win!

1. If no writes happen, there's no need to
update the cache

2. If a write happens, then the relevant
cache item should be updated
accordingly

@nicolas_frankel

RDMBS triggers

§ Not all RDBMS implement triggers

§ How to call an external process from the
trigger?

@nicolas_frankel

The example of MySQL: User-defined function

§ Functions must be written in C++

§ The OS must support dynamic loading

§ Becomes part of the running server
• Bound by all constraints that apply to

writing server code

§ Etc.
-- https://dev.mysql.com/doc/refman/8.0/en/adding-udf.html

@nicolas_frankel

lib_mysqludf_sys
UDF library with functions to interact with the operating system

CREATE TRIGGER MyTrigger
AFTER INSERT ON MyTable
FOR EACH ROW
BEGIN
DECLARE cmd CHAR(255);
DECLARE result INT(10);
SET cmd = CONCAT('update_row', '1');
SET result = sys_exec(cmd);

END;

-- https://github.com/mysqludf/lib_mysqludf_sys

@nicolas_frankel

Cons

§ Implementation-dependent

§ Fragile

§ Who maintains/debugs it?

§ Resource-consuming if done frequently

@nicolas_frankel

Change-Data-Capture

“In databases, Change Data Capture is a set
of software design patterns used to determine
and track the data that has changed so that
action can be taken using the changed data.

CDC is an approach to data integration that is
based on the identification, capture and
delivery of the changes made to enterprise
data sources.”

-- https://en.wikipedia.org/wiki/Change_data_capture

@nicolas_frankel

CDC implementation options

1. Polling + Timestamps on rows

2. Polling + Version numbers on rows

3. Polling + Status indicators on rows

4. Triggers on tables

5. Log scanners
-- https://en.wikipedia.org/wiki/Change_data_capture

@nicolas_frankel

“Turning the database inside out” - Martin Kleppman
-- https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/

@nicolas_frankel

Reasons for the log

1. Data recovery

2. Replication

@nicolas_frankel

What is a transaction/binary/etc. log?

“The binary log contains ‘events’ that
describe database changes such as table
creation operations or changes to table
data.”

-- https://dev.mysql.com/doc/refman/8.0/en/binary-log.html

@nicolas_frankel

What if we “hacked” the log?

@nicolas_frankel

Sample MySQL binlog

UPDATE `test`.`t`

WHERE

@1=1 /* INT meta=0 nullable=0 is_null=0 */

@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */

SET

@1=1 /* INT meta=0 nullable=0 is_null=0 */

@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

at 569

#150112 21:40:14 server id 1 end_log_pos 617 CRC32 0xf134ad89

#Table_map: `test`.`t` mapped to number 251

at 617

#150112 21:40:14 server id 1 end_log_pos 665 CRC32 0x87047106

#Delete_rows: table id 251 flags: STMT_END_F

@nicolas_frankel

Kind reminder…

§ Implementation-dependent

§ Fragile

§ Who maintains/debugs it?

@nicolas_frankel

Debezium to the rescue

§ Java-based abstraction layer for CDC

§ Provided by Red Hat

§ Apache v2 licensed

§ Very skewed toward Kafka

@nicolas_frankel

Debezium

“Debezium records all
row-level changes
within each database
table in a change
event stream”

-- https://debezium.io/

@nicolas_frankel

Debezium connector plugins

§ Production-ready

• MySQL
• PostrgreSQL
• MongoDB

• SQL Server

§ Incubating
• Oracle

• DB2 (!)
• Cassandra

@nicolas_frankel

Hazelcast Jet

§ Stream Processing Engine (SPE)

§ Distributed

§ In-memory

§ Embeds Hazelcast IMDG

§ Apache v2 licensed

§ (Hazelcast Jet Enterprise offering)

@nicolas_frankel

Jet overview

Stream Processor

Data SinkData Source

Hazelcast IMDG
Map, Cache, List, Change

Events

Live Streams
Kafka, JMS,

Sensors, Feeds

Databases
JDBC, Relational, NoSQL,

Change Events

Files
HDFS, Flat Files,

Logs, File watcher

Applications
Sockets

Ingest
In-Memory

Operational Storage

Combine
Join, Enrich,

Group, Aggregate

Stream
Windowing, Event-Time

Processing

Compute
Distributed and Parallel

Computations

Transform
Filter, Clean,

Convert

Publish
In-Memory, Subscriber

Notifications

Stream Stream

@nicolas_frankel

Deployment modes

// Create new cluster member

JetInstance jet = Jet.newJetInstance();

// Connect to running cluster

JetInstance jet = Jet.newJetClient();

Client/ServerEmbedded

Java API

Application

Java API

Application

Java API

Application
Client API

Application

Client API

Application

Client API

Application

Client API

Application

@nicolas_frankel

Pipeline Job

§ Declarative code that
defines and links sources,
transforms, and sinks

§ Platform-specific SDK

§ Client submits pipeline to
the SPE

§ Running instance of pipeline
in SPE

§ SPE executes the pipeline
• Code execution

• Data routing

• Flow control

@nicolas_frankel

Back to our use-case

A Jet job:

1. Watches change events in the
database

2. Analyzes the change event

3. Updates the cache accordingly

@nicolas_frankel

Time for DEM
O

@nicolas_frankel

Recap

§ The caching trade-off

§ Event-based architectures FTW

§ Change-Data-Capture

• Integration through Hazelcast Jet

@nicolas_frankel

Thanks for your attention!

§ https://blog.frankel.ch/

§ @nicolas_frankel

§ https://jet-start.sh/docs/tutorials/cdc

§ https://bit.ly/evergreen-cache

