In-Memory
||

Patterns of Domain-Driven Design
with In-Memory Data Grids

Randy Stafford, Senior Manager
Oracle
October 29, 2020

ORACLE

Hello! (Who’s This Effing Guy?)

A\
« Oracle Coherence Product Manager S) Coherence cE
 Former Coherence Architect-at-Large

* Former member of Oracle A-Team ORAC |_€

« Former Chief Architect of IQNavigator (ﬁ’
« Rally Software Technical Advisory Board ‘01

FFFFFF

« Contributor to architecture literature M
« Frequent conference speaker E’%:’t:e‘:ﬁ';

 An old Smalltalker at heart

In-Memory
Computlng ‘

SUMMIT

Domain-Driven Design (DDD)
In-Memory Data Grids (IMDGs)
Patterns of DDD with IMDGs
Cool new stuff

Summary, Q&A

Domain-Driven Design

» Architectural style at core of OO tradition

» Featuring object model of problem domain . DOMAIN-DRIVEN

DESIGN
« The architectural style that object

persistence technologies have always
been designed to support

Applying Domain-Driven

Design and Patterns

« State representation changed over time:
+ OOPLs -> objects Pvarysis TR HODEL PTTERN
* SOA-> XML ey

« HTML5, NoSQL, pservices -> JSON
« (but where is behavior implemented?) '

* 3
A

>

DAYID C. HAY

In-Memory
|| Computing i

SUMM'T 2020

DDD per Evans: What are the Concepts?

class Flldhl Qs Dotaalr M::drsl/

« Domain objects (not DTOs) — m i

Domain models 9T T
» Entities, distinguished by identifier ol S
Al FlighiLleg c: bz dutledFl i ghillc of Egilatnchil

* Value objects, distinguished by state ittt | e | I

- Aggregates 't ¢ % A

ratlatenl actual

EEIN A

1" |1 |1 1 1 * *
o Aggregate roots Flliel Tltrae Tl Alrcrall Qlual Acallcr
HleRumber S| I The pstumibe e Ik
. . e LAlRImer g
* Relationships o 1 s
wlik e

 Association

|+ I I s Eaklun

[} ‘ OmpOS|t|On PlIedTHp Plic Dy Pkl od PlicdScgmchl
[II|JI]3[H_.' 1%t _‘_ mth,ll'l'll..]l-;l' II'|[¢— 5,1-;||NI,II'|‘|I.J|-:I' [I}18

bipiT Ink 1 n

* Repositories (not DAOSs)

[+

VIRTUAL
EVENT
2020

In-Memory
| N | Computing
I

SUMMIT

DDD Application Runtime Characteristics

« Historically DDD engenders large, highly inter-connected object graphs

« Domain objects reference each other (by pointer) through fields

» Collection-typed fields may accumulate many elements over app lifetime
* Object graphs hinder object movement between processes

* e.g. between remote client and service (hence DTOs)

* Also between middle tier and persistent store

« Also between clustered cache servers!
« Application transactions typically involve many Entities or even Aggregates
* May need transaction isolation in domain layer

» Different persistence technologies solve these problems differently

Domain-Driven Design (DDD)
In-Memory Data Grids (IMDGs)
Patterns of DDD with IMDGs
Cool new stuff

Summary, Q&A

In-Memory Data Grid

» Clustered data management and grid computing software

* Intended to improve performance and scalability of enterprise applications

* Implements key-value (or document) data model; Map interface

» Distinguished from distributed caching platform by more powerful features:
» Persistence and system-of-record reliability

* Querying, aggregation, in-place grid computing, transaction support

« Eventing and messaging, multi-site data federation, change data capture
» Distinction from NoSQL is fuzzy; IMDGs are NoSQL databases+

IMDG History

ORACLE N
Coherence l
Pa
() Coherence cE
;‘ L(Pivotal .
Ar GemFire
§“':’: APACHE .
“.s GEODE >
' []
. >
hazelcast
- . l" >
GridGain/«a 7
Sigrite =
2000 2010 2020
Ilnlml'“%naﬁ% e
S U M M | T 2020

RN O .0 1 M 1 4 S Sl
[7o B s By W 5P

Oracle Coherence Feature Summary
Market-Leading Feature Richness

« Fast key-value store with disk persistence

« Fault-tolerant automatic sharding / o
Clients - “ l\

« Polyglot and REST client interfaces

« Querying, transactions, eventing Services % % %
4 I

* In-place distributed processing -
Grid Sy CHRES =
« HotCache: refresh from database . \

Enterprise ® . ¢
» Scalable durable messaging : . :

_ Site 1
» Docker, Kubernetes, OpenTracing support

10 Copyright © 2020, Oracle and/or its affiliates O

« Multi-site data federation

e i

Coherence Community Edition
Launched June 2020

« Afree and open-source edition of Coherence

* The core of commercial Enterprise and Grid Editions (EE and GE)
« Hosted on GitHub under Universal Permissive License (UPL)

« Artifacts published to Maven Central; Docker images to GitHub

« Entitles subset of EE features; premium features and support require EE or GE licenses

* Interim YY.MM releases give early access to features in upcoming commercial releases
« 20.06 release included Helidon MP integration, gRPC proxy server and Java client

« Part of platform for cloud-native microservice apps with Helidon, GraalVM, Verrazzano
« See

7

Domain-Driven Design (DDD)
In-Memory Data Grids (IMDGs)
Patterns of DDD with IMDGs

 Mapping models to maps

» Relationships
 Transactions

 Domain model caching use cases

Cool new stuff
Summary, Q&A

A Question as old as DDD and IMDGs

http://abdullin.com/journal/2012/5/20/ddd-summit-2012-summary-dddesign.html

In-Memory

Storing Domain Models in IMDGs

 [IMDGs have unique programming model + Implement inter-object references in model

* Not like ORM programming model « Per model-to-map mapping pattern
* A new tier of architecture « Reference By Pointer
* A new place for behavior « Reference By ldentifier

* Implement Map keys (Entity identifiers)

 Choose a model-to-map mapping pattern: + Implement serializability

 Map Per Entity Type * Implement Repositories
 Map Per Aggregate Root Type * Protected Variation pattern
« Map Per Object State « Future impls for different IMDGs/APls

In-Memory
|In|

Patterns of Mapping Models to Maps

Pattern

Pros

Cons

Map Per Entity Type

Map Per Aggregate Root Type

Map Per Object State
(e.g. Orders: new, paid, filled)

* Well-known precedent from ORM world
+ Simplest mapping pattern
* Very uniform and predictable

» Fits well with DDD notion of Aggregate
- Efficient data access and mutation
+ Easy to atomically transaction

» Efficient data access for important state
models

Navigating object graphs requires repeated cache
access

Multi-object atomic transactions become challenging
Query by state required for important state models

Non-uniform; hard to framework (leads to bespoke
code)

App transactions may involve multiple Aggregates
Query by state required for important state models

Requires moving entries between maps as state
changes
May present atomicity challenges

S U 2020

In-Memory
|| Computing i
MMI

Multiple-Cardinality Relationships (1:M, M:N)

« Serialize objects on M side with object on 1 side
« Separate caches for M side, 1 side objects
* M side objects hold identifier of 1 side object
 Requires queries
« 1 side object holds collection of M side object identifiers
« Enables use of getAll()

« May need collection manipulation without deserialization

« Separate cache for Relationship Objects

Transactions

« Single-entry transactions
* Requires Named Cache per Aggregate Root Type pattern
« Assumes only one Aggregate per Application Transaction
» Enterprise application designs skewed for this?

» Partition-level transactions: unique Coherence feature
« Allows efficient multi-entry, multi-cache transactions
* Requires data affinity, single service

« Coherence Transaction Framework

* Full-blown XA / JTA, with attendant performance characteristics
* This is the hardest problem in DDD with IMDGs

Model Caching Use Cases

Name Summary

ek Gl Cache domain objects read from another source, for lower-latency read
access, and offloading the source.

Write Buffering Buffer writes to a data store, to reduce write latency perceived by client, and
to avoid exhausting the data store’s write capacity.

SRR I Process events affecting the state of stored domain objects, updating their
state in a data grid.

Grid Computing Execute parallel distributed logic algorithms on data in a grid, to minimize
execution time or maximize work throughput.

SR e e Maintain up-to-date alternative projections of a domain model, as state-
mutating events are processed.

Key Mapping Map secondary keys to primary keys.

SEMPLELE RER ErEit Cache results of computations (e.g. Hadoop) for access by live application.

In-Memo

||n|°°mpuﬁrr'y9 e
SUMMI Tl2020

Domain-Driven Design (DDD)
In-Memory Data Grids (IMDGs)
Patterns of DDD with IMDGs
Cool new stuff

« HotCache

« GraphQL

Summary, Q&A

HotCache: Cache Refresh from DB Txns

« Push DB changes to Coherence
Coherence
Application * Via GoldenGate and TopLink JPA

 Tables map to entities, caches

« Event-driven and efficient

e Scale-out tested to 20K writes/sec

» Solves stale cache problem when external
apps write to shared DB

HotCache
LT T 11

S}AN / PeSY

« Allows caching to be leveraged in such apps

GoldenGate

Database

EEEEE

GraphQL: Object Graph Navigation

graphgl.org

Aria People Carlson lit Coh Site Coh Wiki Google

Google Maps MyOracle

Describe your data Ask for what you want

Projects v Groups v More v

& GitLab

C coherence-graphql

gitlab-odx.oracledx.com

Aria People Carlson Wagonlit Coherence Site Coherence Wiki Google Google Maps MyOracle OTN Time & Date United

v Search or jump to... Q

Currently supported functionality

Project
r roject i i
5 t:Jagline LY Project overview 1. Automatic GraphQL schema generation of types within Coherence caches including classes and enums via:
. 1. Cache config with key/value mappings; or
Details 2. Annotated classes discovered by running the Jandex Maven Plugin (https://github.com/wildfly/jandex-maven-plugin)
Activity 2. Multiple levels of Object Graphs
3. Top level Query generation from caches
Releases 1. find_* field to find all entries in a cache with optional filter

Get Started Learn More

A query language for your

Cycle Analytics

Insights

@ Repository

2. get_* field to retrieve an individual cache entry via key
. Common list of scalars such as OffsetDateTime, LocalDate, LocalTime, Object, URL and Locale
. Interfaces for value types
. Native types for value types such as String, Integer, Float, etc
. Included GraphiQL client and /graphql resource endpoint available via 3 methods:
1. Coherence 12.2.1.4+ - auto discovery of endpoint with empty resource-config entry
2. Coherence 12.1.2+ - manual inclusion of JAX-RS in resource-config

N O o s

D Issues 0 X . . N .
3. All version - manual inclusion of JAX-RS endpoint via HTTP server such as Grizzly
MM 5 3 8. Ability to turn on/off tracing and set various tracing options
erge Requests
9 q 9. Conversion of Map<K,V> -> Collection - more options TBC
2 Cl/CD

© Security & Compliance

Using Coherence GraphQL

1. Include coherence-graphgl dependencies

i . %@ Operations
GraphQL is a query language for APIs and a runtime for
q - AP - e <dependency>
queries with your existing data. GraphQL provides a c¢ o FaE <groupId>com.oracle.coherence.graphql</groupId>
understandable description of the data in your API, gives ¢ [wiki <artifactld>coherence-graphql-core</artifactId>

to ask for exactly what they need and nothing more, mal

&« Collapse sidebar

<version>0.1.0-SNAPSHOT</version>
</dependency>

evolve APIs over time, and enables powerful develop v wre:

In-Memory
I N | Computing |y

SUMMI T 200

Domain-Driven Design (DDD)
In-Memory Data Grids (IMDGs)
Patterns of DDD with IMDGs
Cool new stuff

Summary, Q&A

In-Memory
||

Patterns of Domain-Driven Design
with In-Memory Data Grids

Randy Stafford, Senior Manager
Oracle
October 29, 2020

ORACLE

