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Hello! (Who’s This Effing Guy?)

• Oracle Coherence Product Manager
• Former Coherence Architect-at-Large
• Former member of Oracle A-Team

• Former Chief Architect of IQNavigator
• Rally Software Technical Advisory Board

• Contributor to architecture literature
• Frequent conference speaker
• An old Smalltalker at heart



Agenda

• Domain-Driven Design (DDD)
• In-Memory Data Grids (IMDGs)
• Patterns of DDD with IMDGs
• Cool new stuff
• Summary, Q&A



Domain-Driven Design

• Architectural style at core of OO tradition
• Featuring object model of problem domain
• The architectural style that object 

persistence technologies have always 
been designed to support

• State representation changed over time:
• OOPLs -> objects
• SOA -> XML
• HTML5, NoSQL, µservices -> JSON
• (but where is behavior implemented?)



DDD per Evans: What are the Concepts?

• Domain objects (not DTOs)
• Domain models
• Entities, distinguished by identifier
• Value objects, distinguished by state
• Aggregates
• Aggregate roots
• Relationships

• Association
• Composition

• Repositories (not DAOs)



DDD Application Runtime Characteristics

• Historically DDD engenders large, highly inter-connected object graphs
• Domain objects reference each other (by pointer) through fields
• Collection-typed fields may accumulate many elements over app lifetime

• Object graphs hinder object movement between processes
• e.g. between remote client and service (hence DTOs)
• Also between middle tier and persistent store
• Also between clustered cache servers!

• Application transactions typically involve many Entities or even Aggregates
• May need transaction isolation in domain layer
• Different persistence technologies solve these problems differently



Agenda

• Domain-Driven Design (DDD)
• In-Memory Data Grids (IMDGs)
• Patterns of DDD with IMDGs
• Cool new stuff
• Summary, Q&A



In-Memory Data Grid

• Clustered data management and grid computing software
• Intended to improve performance and scalability of enterprise applications
• Implements key-value (or document) data model; Map interface
• Distinguished from distributed caching platform by more powerful features:

• Persistence and system-of-record reliability
• Querying, aggregation, in-place grid computing, transaction support
• Eventing and messaging, multi-site data federation, change data capture

• Distinction from NoSQL is fuzzy; IMDGs are NoSQL databases+



IMDG History

2000 20202010



Oracle Coherence Feature Summary
Market-Leading Feature Richness
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• Fast key-value store with disk persistence

• Fault-tolerant automatic sharding

• Polyglot and REST client interfaces

• Querying, transactions, eventing

• In-place distributed processing

• HotCache: refresh from database

• Multi-site data federation

• Scalable durable messaging

• Docker, Kubernetes, OpenTracing  support
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Coherence Community Edition
Launched June 2020

• A free and open-source edition of Coherence
• The core of commercial Enterprise and Grid Editions (EE and GE)
• Hosted on GitHub under Universal Permissive License (UPL)
• Artifacts published to Maven Central; Docker images to GitHub

• Entitles subset of EE features; premium features and support require EE or GE licenses

• Interim YY.MM releases give early access to features in upcoming commercial releases
• 20.06 release included Helidon MP integration, gRPC proxy server and Java client

• Part of platform for cloud-native microservice apps with Helidon, GraalVM, Verrazzano
• See https://coherence.community, https://github.com/oracle/coherence
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A Question as old as DDD and IMDGs

http://abdullin.com/journal/2012/5/20/ddd-summit-2012-summary-dddesign.html



Storing Domain Models in IMDGs

• IMDGs have unique programming model
• Not like ORM programming model
• A new tier of architecture
• A new place for behavior

• Choose a model-to-map mapping pattern:
• Map Per Entity Type
• Map Per Aggregate Root Type
• Map Per Object State

• Implement inter-object references in model
• Per model-to-map mapping pattern
• Reference By Pointer
• Reference By Identifier

• Implement Map keys (Entity identifiers)
• Implement serializability
• Implement Repositories

• Protected Variation pattern
• Future impls for different IMDGs/APIs



Patterns of Mapping Models to Maps

Pattern Pros Cons

Map Per Entity Type • Well-known precedent from ORM world
• Simplest mapping pattern
• Very uniform and predictable

• Navigating object graphs requires repeated cache 
access

• Multi-object atomic transactions become challenging 
• Query by state required for important state models

Map Per Aggregate Root Type • Fits well with DDD notion of Aggregate
• Efficient data access and mutation
• Easy to atomically transaction

• Non-uniform; hard to framework (leads to bespoke 
code)

• App transactions may involve multiple Aggregates
• Query by state required for important state models

Map Per Object State
(e.g. Orders: new, paid, filled)

• Efficient data access for important state 
models

• Requires moving entries between maps as state 
changes

• May present atomicity challenges



Multiple-Cardinality Relationships (1:M, M:N)

• Serialize objects on M side with object on 1 side
• Separate caches for M side, 1 side objects

• M side objects hold identifier of 1 side object
• Requires queries

• 1 side object holds collection of M side object identifiers
• Enables use of getAll()
• May need collection manipulation without deserialization

• Separate cache for Relationship Objects



Transactions

• Single-entry transactions
• Requires Named Cache per Aggregate Root Type pattern
• Assumes only one Aggregate per Application Transaction
• Enterprise application designs skewed for this?

• Partition-level transactions: unique Coherence feature
• Allows efficient multi-entry, multi-cache transactions
• Requires data affinity, single service

• Coherence Transaction Framework
• Full-blown XA / JTA, with attendant performance characteristics

• This is the hardest problem in DDD with IMDGs



Domain Model Caching Use Cases
Name Summary

Read Caching Cache domain objects read from another source, for lower-latency read 
access, and offloading the source.

Write Buffering Buffer writes to a data store, to reduce write latency perceived by client, and 
to avoid exhausting the data store’s write capacity.

Event Processing Process events affecting the state of stored domain objects, updating their 
state in a data grid.

Grid Computing Execute parallel distributed logic algorithms on data in a grid, to minimize 
execution time or maximize work throughput.

Synchronized Projection Maintain up-to-date alternative projections of a domain model, as state-
mutating events are processed.

Key Mapping Map secondary keys to primary keys.
Computation Result Caching Cache results of computations (e.g. Hadoop) for access by live application.
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HotCache: Cache Refresh from DB Txns
• Push DB changes to Coherence
• Via GoldenGate and TopLink JPA
• Tables map to entities, caches
• Event-driven and efficient
• Scale-out tested to 20K writes/sec
• Solves stale cache problem when external 

apps write to shared DB
• Allows caching to be leveraged in such apps
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GraphQL: Object Graph Navigation
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