
How to Track a Million Data Sources
IMCS Training Session: Technology Overview

October 27, 2020
Dr. William Bain, Founder & CEO,

wbain@scaleoutsoftware.com

mailto:wbain@scaleoutsoftware.com

Welcome!

Documentation is posted at:

 https://www.scaleoutsoftware.com/scaleout-support/documentation

The slides and demos are posted at:

https://github.com/scaleoutsoftware/DigitalTwinDemos

ScaleOut Software, Inc. 2

https://www.scaleoutsoftware.com/scaleout-support/documentation
https://github.com/scaleoutsoftware/DigitalTwinDemos

Agenda

• Session 1: Technology Overview (Bill Bain, 1 hour)

• What are Real-Time Digital Twins?

• A Tour of the ScaleOut Digital Twin Streaming Service™
• ScaleOut Digital Twin Builder™ Software Toolkit

• Demo

• Session 2: Walkthrough: Building a Java Digital Twin for Security Tracking (Brandon Ripley, 45
min)

• Break (10 minutes)

• Session 3: Walkthrough: Building a C# Digital Twin for a Wind Turbine (Oleg Shmytov, 45 min)

• Demo: A Contact Tracing Application (Olivier Tritschler, 15 min)

• Session 4: Build Your First Real-Time Digital Twin (Team, 45 min)

• Wrap-Up (Bill Bain, 5 min)

© ScaleOut Software, Inc.

Agenda

• Session 1: Technology Overview (Bill Bain, 1 hour)

• What are Real-Time Digital Twins?

• A Tour of the ScaleOut Digital Twin Streaming Service™
• ScaleOut Digital Twin Builder™ Software Toolkit

• Demo

• Session 2: Walkthrough: Building a Java Digital Twin for Security Tracking (Brandon Ripley, 45
min)

• Break (10 minutes)

• Session 3: Walkthrough: Building a C# Digital Twin for a Wind Turbine (Oleg Shmytov, 45 min)

• Demo: A Contact Tracing Application (Olivier Tritschler, 15 min)

• Session 4: Build Your First Real-Time Digital Twin (Team, 45 min)

• Wrap-Up (Bill Bain, 5 min)

© ScaleOut Software, Inc.

Agenda

• Session 1: Technology Overview (Bill Bain, 1 hour)

• What are Real-Time Digital Twins?

• A Tour of the ScaleOut Digital Twin Streaming Service™

• ScaleOut Digital Twin Builder™ Software Toolkit

• Demo

• Session 2: Walthrough: Building a Java Digital Twin for Security Tracking (Brandon Ripley, 45
min)

• Break (10 minutes)

• Session 3: Walkthrough: Building a C# Digital Twin for a Wind Turbine (Oleg Shmytov, 45 min)

• Demo: A Contact Tracing Application (Olivier Tritschler, 15 min)

• Session 4: Build Your First Real-Time Digital Twin (Team, 45 min)

• Wrap-Up (Bill Bain, 5 min)

© ScaleOut Software, Inc.

Agenda

• Session 1: Technology Overview (Bill Bain, 1 hour)

• What are Real-Time Digital Twins?

• A Tour of the ScaleOut Digital Twin Streaming Service™
• ScaleOut Digital Twin Builder™ Software Toolkit

• Demo

• Session 2: Walkthrough: Building a Java Digital Twin for Security Tracking (Brandon Ripley, 45
min)

• Break (10 minutes)

• Session 3: Walkthrough: Building a C# Digital Twin for a Wind Turbine (Oleg Shmytov, 45 min)

• Demo: A Contact Tracing Application (Olivier Tritschler, 15 min)

• Session 4: Build Your First Real-Time Digital Twin (Team, 45 min)

• Wrap-Up (Bill Bain, 5 min)

© ScaleOut Software, Inc.

Agenda

• Session 1: Technology Overview (Bill Bain, 1 hour)

• What are Real-Time Digital Twins?

• A Tour of the ScaleOut Digital Twin Streaming Service™
• ScaleOut Digital Twin Builder™ Software Toolkit

• Demo

• Session 2: Walkthrough: Building a Java Digital Twin for Security Tracking (Brandon Ripley, 45
min)

• Break (10 minutes)

• Session 3: Walkthrough: Building a C# Digital Twin for a Wind Turbine (Oleg Shmytov, 45 min)

• Demo: A Contact Tracing Application (Olivier Tritschler, 15 min)

• Session 4: Build Your First Real-Time Digital Twin (Team, 45 min)

• Wrap-Up (Bill Bain, 5 min)

© ScaleOut Software, Inc.

Technology Overview

• Goals and challenges for stream processing with large numbers of data sources

• What are real-time digital twins? Why use them?

• Advantages in comparison to traditional approaches

• Target use cases

• Using in-memory computing to host digital twins

• Implementing and deploying digital twin models

• Using ScaleOut’s cloud-based streaming service

• APIs designed for building digital twins

• Demo of a security application for a power grid

© ScaleOut Software, Inc.

About ScaleOut Software

• Develops and markets software for in-memory computing:
• Scales application performance and

• Provides real-time analytical insights using

• In-memory data storage, computing, and stream processing

• Deep domain expertise:
• Dr. William Bain, Founder & CEO. Bell Labs, Intel, Microsoft

• Over 15 years in the market

• Consistent track record of innovation and technology leadership

• Flexible business model to meet diverse needs:
• Fully supported software releases

• Dedicated to ease-of-use to minimize training and lower TCO

• On-premise or cloud

• Choice of licensing models: perpetual, subscription, cloud-hosted

© ScaleOut Software, Inc. 9

Goals of Stream Processing

• Goal: maximize situational awareness & real-time control

• How:
• Process incoming data streams from many thousands of devices.
• Analyze events for patterns of interest.
• Provide timely (real-time) feedback and alerts.
• Provide aggregate analytics to identify patterns.

• Many applications in IoT and beyond:
• Medical monitoring
• Logistics & manufacturing
• Disaster recovery & security
• Financial trading & fraud detection
• Ecommerce recommendations

Event Sources

© ScaleOut Software, Inc.

Quick Example: Medical Refrigerators

• Cloud-based streaming service monitors 10,000+
medical refrigerators:

• Refrigerators hold highly important
tissue samples, embryos, etc.

• Service receives periodic telemetry:
• Temperature
• Power consumption
• Door position, etc.

• Must predict failure before it occurs:
• Notify user to migrate contents to another

refrigerator.
• Avoid false positives.
• Identify widespread power outages (aggregate

analytics).

11© ScaleOut Software, Inc.

Sep 26, 2019

Challenges for Large Numbers of Data Sources

• Popular software platforms (Flink, Storm, Beam) are pipeline-oriented:
• Push all messages through a single pipeline or directed graph of processing stages.

• Creates complexity challenges:
• Difficult to: correlate events by each data source, track state, embed analytics
• Cannot respond to individual data sources.

• Creates performance challenges:
• Difficult to: respond with low latency, scale for thousands of data sources

• Requires aggregate analytics to be performed offline.

© ScaleOut Software, Inc.

Adding Context to Stream-Processing

• Stateful stream-processing platforms add “unmanaged” data storage to the pipeline:
• Pipeline stages perform transformations in a sequence of stages from data sources to sinks.

• Data storage (distributed cache, database) is accessed from the pipeline by application code in an
unspecified manner.

• Examples: Apama (CEP), Apache Flink, Storm

• Problems:
• There is no software architecture

for managing state information.

• This adds complexity to the
application.

• Creates a network bottleneck.

13© ScaleOut Software, Inc.

Avoiding Network Bottlenecks

• External data storage requires network access to obtain an event’s context.

• Network bottleneck prevents scalable throughput.

14© ScaleOut Software, Inc.

Example: Azure Stream Analytics

Microsoft’s platform finds patterns and trends within an incoming data stream of
messages.

• Aggregates data within the data stream over a time window:
• Can trigger functions and export to a database, data lake, or Power BI for visualization.

• Examples:
• Ad server: Count the number of ads served by product in the last 5 minutes.
• Fleet telemetry: Compute the average speed for all trucks by region.

• Uses SQL with time windowing extensions to query data stream:
• Each message is a row with attributes including timestamp.
• The time-ordered stream of messages is a column to be queried.

• Azure Stream Analytics cannot analyze why the data sources are sending this data and
give them appropriate feedback:

• Ex.: Why users prefer certain products and what other ads should they see
• Ex.: Why trucks are delayed (weather, lost driver, mechanical issue) and what action should be taken

15© ScaleOut Software, Inc.

Lambda Architecture: Batch Parallel Analytics

• Lambda architecture separates stream-processing (“speed layer”) from data-parallel
analytics (“batch layer”).

• Creates queryable state, but:
• Does not enhance context

for stateful stream processing.

• Does not perform data-parallel analytics
online for immediate feedback.

• Does not lead to a “Hybrid Transactional
and Analytics Processing” (HTAP)
architecture.

16

https://commons.wikimedia.org/w/index.php?curid=34963987

How combine stream processing
with state to simplify design,
maximize performance, and
enable fast data-parallel analytics?

© ScaleOut Software, Inc.

Ad Hoc Solutions Are Complex

How simultaneously track and analyze the dynamic state of 1000s of data sources?

• Typical work-around: build ad hoc network of cloud-based services plus offline analytics:
• Front-end REST service receives incoming messages and sends replies.

• Intermediate application server farm tracks data sources and processes messages.

• Database service and/or blob store host state.

• Offline analytics service (e.g., Spark) analyzes stored data.

• Offline visualization displays results.

• Problems with this approach:
• Complex to design and implement, requiring multiple skills

• Introduces scaling bottlenecks and availability challenges.

• Offline analytics delay results.

© ScaleOut Software, Inc. 17

Real-Time Digital Twins
• A new software technique for stream-processing refactors stream-processing to

center on state tracking instead of pipelined execution.

• What it does:

• Automatically correlates telemetry from each device or data source.

• Tracks dynamic state for each data source.

• Provides a software framework for hosting application logic (e.g., rules, ML).

• Enables real-time aggregate analysis in place.

© ScaleOut Software, Inc.

Anatomy of a Real-Time Digital Twin

A real-time digital twin model describes how to process incoming key events from a
specific type of data source (e.g., a wind turbine). It consists of a:

• Message processor:
• Receives and analyzes events and commands.
• Encapsulates analysis algorithm.
• Generates alerts and outbound device messages.

• State object, which holds dynamic data:
• Context/metadata

for analyzing events

• Also: time-ordered event
lists, cached parameters

• One instance per data
source (device)

19© ScaleOut Software, Inc.

Other Uses of the Term “Digital Twin”

• Created by Michael Grieves for product design and life cycle management (PLM);
popularized by Gartner:
• A virtual version of a physical entity
• Also, context to interpret telemetry

streaming back from the field

• Also:
• AWS device shadow: cloud-based repository for per-device state information with

pub/sub messaging
• Azure IoT device twin: JSON document that stores per-device state information

(metadata, conditions)
• Azure digital twin: spatial graph of spaces, devices,

and people for modeling relationships in context

• These uses are not for real-time stream processing.

© ScaleOut Software, Inc.

A digital twin may be used for simulation, as a kind
of prototype to understand expected behavior,

existing before there is a physical twin. It can also
capture real-world behavior so that, for example,

analytics and learning can be performed. …

Definition of “Digital Twin” from the
Digital Twin Consortium

Comparison: Two Types of Digital Twins

• A real-time digital twin is not a PLM model of a physical device.

• However, it does model a data source’s behavior for the purpose of streaming
analytics.

PLM Digital Twin Real-Time Digital Twin

Goal: Aid in product development. Goal: Aid in real-time streaming analytics.

Models characteristics and behavior of a
physical device (e.g., a simulation model).

Analyzes telemetry streams from a physical
device & generates feedback and alerts.

Can proactively generate outputs over time
for simulation purposes.

Reactively processes telemetry messages and
commands.

Implements dynamic state that models device
behavior to evaluate lifecycle issues.

Implements dynamic state that adds context
to help interpret telemetry.

Example: digital twin for a medical refrigerator:

Models door open/close events, power
fluctuations, etc. to evaluate MTBF.

Analyzes events based on maintenance
history, etc. to predict & avoid failure.

© ScaleOut Software, Inc.

Advantages of Real-Time Digital Twins

• Simplifies application design:
• Provides automatic event correlation and access to per-device state.
• Uses well known object-oriented techniques and avoids special languages.

• Enables deeper introspection in real time and enhanced situational awareness:
• Dynamically tracks state

of each device to help
analyze incoming events.

• Provides orchestration
for analytics code (e.g.,
rules engine, ML).

• Enables integrated,
aggregate analysis.

• High performance: respond to data source in 1-3 msec; aggregate analysis in 5-10
secs.

• Allow transparent scaling, migration to the edge, hierarchical design, and more.

© ScaleOut Software, Inc.

What Real-Time Digital Twins Enable

RTDTs enable focused analysis and feedback for each data source.

• How?
• They maintain immediately accessible contextual information for each data source.

• They allow application code to process only those messages from a given data source.

• Example: telematics for a trucking fleet
• Telemetry includes location, speed,

mechanical & cargo parameters.

• RTDT includes route, cargo, info on
driver, service history & issues, status

• Using this telemetry RTDT can:
• Alert driver to upcoming hazardous road conditions.

• Assist lost driver or alert if driving too long or unsafely.

• Track emerging mechanical issues with vehicle or risk to cargo.

• Maintain status which can be aggregated for all trucks to enhance situational awareness.

23© ScaleOut Software, Inc.

Large Scale Fleet Tracking

• Real-time tracking for a
car/truck fleet
• 100K+ vehicles

• Immediately responds to
issues with individual
vehicles:
• Lost driver
• Driver working too long.
• Impending engine or cargo

issue

• Detects & responds to
regional issues within
seconds
• Weather delays, highway

blockages
• Redirects drivers.

Fleet-Tracking Application

© ScaleOut Software, Inc.

Target Use Cases

• Applications that track thousands of data sources which require
fast response times, aggregate analysis, and situational awareness

• General category: real-time intelligent monitoring
• Examples:

• Fleet management
• Health tracking
• Disaster recovery
• Security monitoring
• Ecommerce

recommendations
• Fraud detection
• Traffic control / smart cities

25© ScaleOut Software, Inc.

Example: Security / Disaster Recovery

• Intrusion sensors analyze
telemetry to predict
unauthorized access at each
location.

• Aggregate analysis of
perimeter sensors indicates
scope of threat.

• Enables focused, real-time
response to all critical
locations.

26© ScaleOut Software, Inc.

Nov 13, 2015

The November 2015 Paris
attacks were a series of
coordinated terrorist
attacks that took place on
13 November 2015

Example: Real-Time Health Tracking

• Digital twins analyze telemetry from
health-tracking devices to help ensure
safety (predict events):

• Digital twins receive periodic
messages with key metrics (heart
rate, blood oxygen, etc.).

• State objects track person’s health
history, medications, limitations,
recent medical events.

• Analysis algorithm can integrate
dynamic, aggregate results from large
populations.

© ScaleOut Software, Inc.

Example: Ecommerce Recommendations

• Ecommerce site may have 100k+
shoppers, each generating a clickstream.

• Digital twin for each shopper:
• Maintains a history of clicks, shopper’s

preferences, and purchasing history.

• Analyzes clicks to create new
recommendations in real time.

• Aggregate analysis:
• Determines collaborative shopping

behavior, basket statistics, etc.

• Enables targeted, real-time flash sales.

© ScaleOut Software, Inc.

RTDTs Simplify Application Design

State-centric approach (vs. event-centric) simplifies tracking of thousands of
individual data sources:

• Avoids event correlation
in the application.

• Avoids need for
ad hoc state storage.

• Encapsulates analysis
logic in one place.

• Provides automatic
domain for aggregate
analysis.

© ScaleOut Software, Inc.

RTDTs Leverage Object-Oriented Techniques

• Digital twin objects can use inheritance
to create specialized behaviors:

30

• Instances of objects can be organized in
a hierarchy:

Base Class

IS A

Sub-Class

© ScaleOut Software, Inc.

Using RTDTs in a Hierarchy

Tracks complex systems as hierarchy
of digital twin objects:

• Leaf nodes receive telemetry from
physical endpoints.

• Higher level nodes represent
subsystems:

• Receive telemetry from lower-level
nodes.

• Supply telemetry to higher-level nodes
as alerts.

• Allow successive refinement of
real-time telemetry into higher-level
abstractions.

31

Example: Hierarchy of Digital Twins
for a Windmill

© ScaleOut Software, Inc.

RTDTs Simplify Migration to Edge

• Migration of stream-processing intelligence to the edge is an ongoing trend driven by
continuous advances in technology.

• Constructing software components as o-o digital twins simplifies migration:
• Makes software decomposition independent of execution location.

• Avoids rewriting code for execution at the edge; can leverage containers.

32© ScaleOut Software, Inc.

RTDTs Avoid Network Bottlenecks

• State-centric approach distributes events across state objects.

• Avoids network bottleneck accessing remote data store from event pipeline.
• Network bottlenecks prevent scalable throughput.

© ScaleOut Software, Inc.

RTDTs EnableFast, Scalable Performance

• When hosted on an in-memory computing platform, they can:

• Process event message in 1-3 milliseconds.

• Complete typical data-parallel analysis in ~5-10 seconds.

• Performance can transparently
scale to handle 1M+
instances.

© ScaleOut Software, Inc.

RTDTs Leverage In-Memory Computing

• State objects can be hosted within an in-memory data grid (IMDG).

• IMDG delivers event messages to state objects and runs message processor.

• IMDG can perform data-parallel analysis in place across state objects.

Data-parallel analysis

© ScaleOut Software, Inc.

How an IMDG Runs Digital Twin Models

• Digital twin instances are hosted as
objects in the Data Grid.

• Digital twin models run in an IG
called the Worker Grid.

• Connectors run in an IG called the
Connector Grid.

• Connectors invoke message
processor on the server hosting
the device’s instance object.
• Steers messages to object by id.
• This minimizes network overhead. In-Memory Data Grid

Scale

Message Hub

© ScaleOut Software, Inc.

RTDTs Can Access Historical State

• Digital twins store dynamic state
information in memory for fast
access.

• Also can retrieve slowly- changing
data from a database:
• Device parameters
• Maintenance history

• Can update database:
• Event-message history
• Significant changes to the device

© ScaleOut Software, Inc.

RTDTs Enable Telemetry Filtering

• Real-time digital twins
create dynamic state
information derived from
incoming telemetry.

• This information can be
aggregated to spot
patterns and trends.

• Real-time digital twins also
can filter events for offline
analysis in the data lake:

© ScaleOut Software, Inc.

RTDTs Enable Aggregate Analysis

• Simultaneously analyzes all real-time digital twin instances to
identify and visualize widespread trends in real time.

• Boosts situational awareness.

• Some examples:
• Offer flash sale to individual

online shoppers and tweak it
in real time by tracking
overall impact.

• Manage wind turbines and spot severe regional weather to take
preventive action.

• Monitor power stations and
identify rolling blackout.

• Track a rental car fleet and alert all drivers vehicles approaching an
unplanned road closure.

© ScaleOut Software, Inc. 39

Aggregate Analysis with MapReduce

• A well-known, data-parallel technique:

• Aggregates property values across all
instances of a model.

• Allows results to be grouped according
to the value of another property.
• Example: Ave. vehicle speed by county

• Runs seamlessly within an IMDG:
• Runs concurrently with event processing.
• Avoids network bottlenecks.
• Avoids delay for offline processing.

MapReduce Data Flow

Digital twin state objects

Aggregated results

© ScaleOut Software, Inc.

Example Output of Aggregate Analysis

Aggregate analysis
quickly pinpoints
emerging issues for
managers:

• Aggregates state
properties in all
RTDT instances and
displays results.

• Can runs
continuously as a
background
MapReduce job.

© ScaleOut Software, Inc. 41

ScaleOut’s Cloud-Based Streaming Service

© ScaleOut Software, Inc. 42

• Build & deploy real-time digital twin models

• Create & visualize real-time aggregate
analytics

• Use as an Azure-hosted cloud service

• Intuitive web-based UI for ease of use

• Connectors for Azure, AWS, Kafka, and REST

• Backed by ScaleOut support

New technology for real-time monitoring and streaming analytics at scale

Integrates Into Cloud Infrastructure

• Runs alongside other Azure streaming services:
• Connects to Azure IoT Hub (and others) to exchange messages with data sources.
• Optionally exports real-time aggregate statistics to Power BI for visualization.

© ScaleOut Software, Inc. 43

Cloud + On Premises Streaming Platforms

© ScaleOut Software, Inc. 44

• Build & deploy real-time digital twin models

• Create & visualize real-time aggregate analytics

• Use as a hosted service

• Intuitive web-based UI for ease of use

• Connectors for Azure, AWS, Kafka, and REST

• Backed by ScaleOut support

• Run on-premises

• Deploy real-time digital twin models & connectors

• Use APIs to access all features

Deploying a Digital Twin to the Cloud

• Model is first created
using APIs.

• UI uploads code from a
zip file which contains
dll’s for all
dependencies.

• UI selects language
runtime, such as Java,
C#, JavaScript.

© ScaleOut Software, Inc.

Deploying a Connector to the Cloud

• Connectors can be
created by
specifying the hub
type and connection
parameters.

• Hub types include:
• Azure IoT Hub
• AWS Core
• Azure Kafka

• REST is accessed
using a URL.

© ScaleOut Software, Inc.

Managing Digital Twin Models in the Cloud

• Each model can be
independently
managed to check
status and restart as
necessary:

© ScaleOut Software, Inc.

Examining a Digital Twin Instance

• The properties for each
digital twin instance
(i.e., for each device)
can be examined:

© ScaleOut Software, Inc.

Collecting Aggregate Statistics

• “Widgets” can be
created for digital
twin models to
display aggregate
statistics:

• Performs periodic
MapReduce on
selected state
properties.

• Runs every few
seconds.

© ScaleOut Software, Inc.

Querying Real-Time Digital Twin Instances

• Instances can be
queried using a
simplified, UI-based
version of SQL
SELECT.

• The number of
records returned
can be limited.

• Runs in a few
seconds.

© ScaleOut Software, Inc.

Using Aggregate Analytics & Query

Maximizes situational awareness.

• Integrated analytics engine
combines key RTDT data in seconds.

• Example: Determine largest shortfall in
hospital supplies by region.

• Streaming service lets users
visualize results.

• Example: Show shortfall by region as a
bar chart to alert on problem areas as
they occur.

• Users query RTDT data to identify
issues and take action.

• Example: Query RTDTs to find specific
hospitals with largest shortfall in
affected regions.

© ScaleOut Software, Inc. 51

Building and Deploying Real-Time Digital Twins

• Step 1: Build a real-time digital
twin model and deploy to the
cloud service for execution:

• Step 2: Connect the IMDG to a
message hub (e.g., Azure IoT
Hub, AWS IoT, Kafka, REST, etc.):

• RTDT instances are automatically
created as messages flow in from
data sources.

© ScaleOut Software, Inc.

Why Use Specific APIs for Digital Twins?

• Simplifies application design; avoids complexity of underlying IMDG APIs,
including:
• Explicitly managing and accessing state objects in the IMDG
• Orchestrating the staging of message-processing code across the IMDG
• Connecting digital twins to data sources
• Delivering messages to digital twins and back to data sources
• Ensuring highly available message handling

• Digital twin APIs and services allow the application to focus on:
• Defining message-processing code for each type of data source
• Defining the dynamic state information to be managed for each data source
• Describing periodic data-parallel analytics to be performed across all digital

twins of a given type

© ScaleOut Software, Inc.

Digital Twin Builder APIs

• Application defines a message type for incoming messages.

• Application implements a base class DigitalTwinBase to define a state object
that holds instance properties and optional event lists.

• Application implements a message processor method:

ProcessMessage(stateObject, processingContext, messageList)

• ProcessingContext defines APIs for sending messages to data source or to
other twins.

• Message list contains an enumerable list of messages that arrived since last call
to ProcessMessage.
• Hides latency by handling multiple messages at once.
• Enables single acknowledgment for a group of messages.

© ScaleOut Software, Inc.

Deployment APIs

• Deploy model to IMDG:

builder = new ModelBuilder()
.AddDependency(“code.dll”)
.AddModel<stateObjectType,

 messageProcessorType,
 eventMessageType>()
 .Build();

• Deploy model to the cloud
service using the UI:

© ScaleOut Software, Inc.

Development in a Mock Environment

• Debugging and test within the cloud service
can be challenging.

• Cannot set breakpoints and examine state.
• Difficult to verify all code paths.

• Mock environment allows development and test
on developer’s workstation:

• Uses same base classes as production
deployment.

• Replaces ProcessingContext with mock
version.

• Deploys model with same APIs as used
on-premises.

• Allows sending/receiving messages from
instances.

• Allows instance state to be examined.

© ScaleOut Software, Inc.

Example: Simulated Power Grid

• Goal: Demonstrate value of enhanced situational awareness

• Overview:
• Simulates 20K nodes within a power grid spanning the US and subject to outages or attack.
• Each node streams telemetry with its status to its real-time digital twin in the cloud service.
• Real-time twin evaluates

telemetry and updates
derived state: alert level:

• Assesses threat level
for that node (range 0-20)

• Updated by examining
telemetry with knowledge
of node’s function and
reporting history (e.g.,
false positives)

© ScaleOut Software, Inc. 57

Example: Simulated Power Grid

Fast development and deployment:

• Developer just implements one message processing method and state object for a
single real-time digital twin.

• Approximately 20 Java statements in this demonstration

• Platform automatically runs this code for all data sources.
• Automatically correlates incoming messages by data source.

• Automatically scales to handle large workloads.

• Developer avoids:
• Selecting telemetry out of a single,

combined event stream

• Creating ad hoc storage for contextual data

• Pushing the data into a data lake for
offline analysis using Spark

© ScaleOut Software, Inc. 58

Example: Simulated Power Grid

Aggregate analysis by the cloud service quickly pinpoints emerging threats for managers:

• Evaluates alert level in digital twin state for all nodes and aggregates results.

• Dashboard widget displays maximum alert level by region.

• Runs every 5 seconds as a background MapReduce job.

© ScaleOut Software, Inc. 59

Takeaways

• Real-time stream-processing does not allow thousands of data sources to be
individually tracked and does not have integrated aggregate real-time analytics.

• Traditional approaches (Lambda Architecture, pipelines) limit real-time
processing and don’t perform aggregate analysis in real time.

• Real-time digital twins offer a breakthrough:
• Deeper introspection in real time
• Simplified application design
• Fast, scalable performance

• Enable vastly improved situational awareness and response.

• ScaleOut’s in-memory data grid and
cloud service provides a fast, scalable
and easy to use execution platform.

© ScaleOut Software, Inc.

Agenda

• Session 1: Technology Overview (Bill Bain, 1 hour)

• What are Real-Time Digital Twins?

• A Tour of the ScaleOut Digital Twin Streaming Service™
• ScaleOut Digital Twin Builder™ Software Toolkit

• Demo

• Session 2: Walkthrough: Building a Java Digital Twin for Security Tracking (Brandon Ripley, 45
min)

• Break (10 minutes)

• Session 3: Walkthrough: Building a C# Digital Twin for a Wind Turbine (Oleg Shmytov, 45 min)

• Demo: A Contact Tracing Application (Olivier Tritschler, 15 min)

• Session 4: Build Your First Real-Time Digital Twin (Team, 45 min)

• Wrap-Up (Bill Bain, 5 min)

© ScaleOut Software, Inc.

Agenda

• Session 1: Technology Overview (Bill Bain, 1 hour)

• What are Real-Time Digital Twins?

• A Tour of the ScaleOut Digital Twin Streaming Service™
• ScaleOut Digital Twin Builder™ Software Toolkit

• Demo

• Session 2: Walkthrough: Building a Java Digital Twin for Security Tracking (Brandon Ripley, 45
min)

• Break (10 minutes)

• Session 3: Walkthrough: Building a C# Digital Twin for a Wind Turbine (Oleg Shmytov, 45 min)

• Demo: A Contact Tracing Application (Olivier Tritschler, 15 min)

• Session 4: Build Your First Real-Time Digital Twin (Team, 45 min)

• Wrap-Up (Bill Bain, 5 min)

© ScaleOut Software, Inc.

ScaleOut Software, Inc. 63

Natural Gas Smart Meter Digital Twin Model

Programming Exercise:
1. Create a digital twin model to process telemetry from a gas sensor for tracking gas concentration

and alerting when maximum exposure has been reached.
2. Create messages which report the id, current ppm, and timestamp for a gas sensor.
3. Set an alert flag when either the gas level exceeds 50 ppm for more than 15 minutes or the level

spikes to 200 ppm.
4. (Bonus task): in addition to setting the flag add the code for sending a pipe shutdown control

message back to the meter device using the SendToDataSource method.

Natural gas typically consists of methane (or ethane),
propane and other elements. This gas is an extremely
fast-acting, toxic substance. The maximum allowable
short-term exposure level is 50 ppm for 15 minutes

Assessing Threats for the Power Grid
IMCS Training Session: Java Demo

October 27, 2020
Brandon Ripley, Senior Software Engineer

brandonr@scaleoutsoftware.com

mailto:wbain@scaleoutsoftware.com

Agenda

• Introduction and Session Overview

• Where to Go for Help

• Community Forum

• User’s Guide, Project Configuration Guide

• API Documentation

• Java Digital Twin API Overview

• Power Grid Code Example

• Wrap-up and Questions

Example: Simulated Power Grid

• Goal: Demonstrate value of enhanced situational awareness

• Overview:
• Simulates 20K nodes within a power grid spanning the US and subject to outages or attack.
• Each node streams telemetry with its status to its real-time digital twin in the cloud service.
• Real-time twin evaluates

telemetry and updates
derived state: alert level:

• Assesses threat level
for that node (range 0-20)

• Updated by examining
telemetry with knowledge
of node’s function and
reporting history (e.g.,
false positives)

© ScaleOut Software, Inc. 66

Assesing Threats at Scale

Challenge
• Static State is Not Enough
• Many Data Sources
• Real-time Messaging

Solution – Real-Time Digital Twin Model
• Derived, Operational State
• Live Data Source Tracking
• Real-time Responsiveness

Create the StatusTracker Model

1. Digital Twin Base Class

• Assign State Variables

2. Message class
• Represent DataSource Telemetry

3. MessageProcessor
• Insert Business Logic

© ScaleOut Software, Inc. 68

Deploying your Model

• Test Model with MockEnvironment

• Create Configuration
• Called “model.json”
• Specify the Types – DigitalTwin, Message, and MessageProcessor

• Package
• Create Zip File with “model.json”, Model JAR, and other Dependency JARs

• Deploy
• Cloud-Service or On-premises Deployment

© ScaleOut Software, Inc. 69

© ScaleOut Software, Inc. 70

Demo

StatusTracker Digital Twin Model
Available at:

GitHub.com/scaleoutsoftware/DigitalTwinDemos

https://github.com/scaleoutsoftware/DigitalTwinDemos/tree/main/Java/StatusTracker

Conclusion

• Showed Useful Web Locations

• Overview of the Java Digital Twin Model

• Created StatusTracker Digital Twin Model

• Tested the StatusTracker with MockEnvironment API

• Deployed the StatusTracker to the Cloud-Service

ScaleOut Software, Inc. 71

Resources

• Community Forum

• Real-Time Digital Twin Cloud Service User’s Guide

• Java API Documentation

• Java Project Configuration Guide

• Maven Repository

• Digital Twin Model Core API

• All Digital Twin Model Demos

ScaleOut Software, Inc. 72

https://community.scaleoutsoftware.com/
https://static.scaleoutsoftware.com/docs/digital_twin_user_guide/index.html
https://static.scaleoutsoftware.com/docs/digitaltwin-builder-javadoc/index.html
https://static.scaleoutsoftware.com/docs/JavaProjectConfigurationGuide/jpcg.html
https://repo.scaleoutsoftware.com/
https://github.com/scaleoutsoftware/JavaDigitalTwinCore
https://github.com/scaleoutsoftware/DigitalTwinDemos/tree/main/Java/StatusTracker

Creating a Real-Time Digital Twin
Model for .Net Runtime.

Tracking a Wind Turbine C# Example

Oleg Shmytov, Senior Director of Engineering
(olegs@scaleoutsoftware.com)

October 27, 2020

Agenda
• Overview of the wind turbine digital twin model

• Goals for real-time digital twins
• Basic principles of creating real-time digital twin models
• Description of the model code

• Overview of ScaleOut digital twin related NuGet packages

• Demo:
• Testing the model in a mock environment

• Demo:
• Deploying and running a wind turbine model in the ScaleOut Digital Twin Cloud

Service
• Processing messages from Azure IoT Hub

© ScaleOut Software, Inc. 74

Example: Wind Turbine
• Automatically correlates telemetry from each data source.

• Immediately accesses and tracks dynamic, device-specific state for each wind turbine; for
example:

• Knows turbine’s model characteristics, service history and requirements (e.g., time until next service).
• Tracks recent events (e.g., overtemp/overspeed events).

• Introspects and alerts in real time on derived device-specific state information; for example:
• Tracks frequency and duration of overtemp/overspeed alerts and adjusts feedback based on dynamic

analysis.

• Adjusts time to alerting based on model & characteristics.
• Adjusts time to alerting if service is upcoming (higher likelihood of unexpected failure).

• Scales for 1000s of devices without database & network delays.

75© ScaleOut Software, Inc.

Jul 22, 2019

Sample Application with Code (C#)

• Goal: Illustrate use of digital twin to analyze temperature telemetry from a wind turbine.

• Digital twin tracks:

• Parameters: model, pre-maintenance period based on model, max. allowed temperature,
max. allowed over-temp duration (normal and pre-maintenance)

• Dynamic state: time to next maintenance, over-temp condition and its duration

• Message processing:

• Determines onset of and recovery from over-temp condition

• Alerts at maximum allowed duration based on normal and pre-maintenance conditions

• Logs incidents for time-windowing analysis

© ScaleOut Software, Inc. 76

Block Island Wind Farm

Sample State Object (C#)

© ScaleOut Software, Inc. 77

public class WindTurbine : DigitalTwinBase
{
 // physical characteristics:
 public const string DigitalTwinModelType = "windturbine";
 public WindTurbineModel TurbineModel { get; set; } = WindTurbineModel.Model7331;
 public DateTime NextMaintDate { get; set; } = new DateTime().AddMonths(36);
 public const int MaxAllowedTemp = 100; // in Celsius
 public TimeSpan MaxTimeOverTempAllowed = TimeSpan.FromMinutes(10);
 public TimeSpan MaxTimeOverTempAllowedPreMaint = TimeSpan.FromMinutes(2);

 // dynamic state variables:
 public bool TrackingOverTemp { get; set; }
 public DateTime OverTempStartTime { get; set; }
 public int NumberMsgsWithOverTemp { get; set; }

 // list of incidents and alerts:
 public List<Incident> IncidentList { get; } = new List<Incident>();
}

Sample Message Processor (Outer Loop)

© ScaleOut Software, Inc. 78

 public override ProcessingResult ProcessMessages(ProcessingContext context,
 WindTurbine dt, IEnumerable<DeviceTelemetry> newMessages)
{
 var result = ProcessingResult.NoUpdate;

 // determine if we are in the pre-maintenance period for this wind turbine model:
 var preMaintTimePeriod = _preMaintPeriod[dt.TurbineModel];
 bool isInPreMaintPeriod = ((dt.NextMaintDate
 - DateTime.UtcNow) < preMaintTimePeriod) ? true : false;

 // process incoming messages to look for over-temp condition:
 foreach (var msg in newMessages) {
 // if message reports a high temp indication, track it:
 if (msg.Temp > WindTurbine.MaxAllowedTemp)
 <track over-temp condition>
 else if (dt.TrackingOverTemp)
 <resolve over-temp condition>
 }
 return result;}

Track or Resolve Over-Temp Condition

© ScaleOut Software, Inc. 79

// track over-temp condition:
{dt.NumberMsgsWithOverTemp++;

if (!dt.TrackingOverTemp) {
 dt.TrackingOverTemp = true; dt.OverTempStartTime = DateTime.UtcNow;
 <add a notification to the incident list> }

TimeSpan duration = DateTime.UtcNow - dt.OverTempStartTime;

// if we have exceeded the max allowed duration for an over-temp, send an alert:
if (duration > dt.MaxTimeOverTempAllowed ||
 (isInPreMaintPeriod && duration > dt.MaxTimeOverTempAllowedPreMaint)) {
 var alert = new Alert(); <fill out the alert message>;
 context.SendToDataSource(Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(alert)))
;
 <add a notification to the incident list> }}

// resolve the condition and reset our state:
{dt.TrackingOverTemp = false; dt.NumberMsgsWithOverTemp = 0;
 <add a notification to the incident list> }

© ScaleOut Software, Inc. 80

DEMOs

© ScaleOut Software, Inc. 81

Overview of .NET API library for building real-time digital twin models:
https://static.scaleoutsoftware.com/docs/digital_twin_user_guide/software_toolkit/dt_bui
lder/dotnet_api/dotnet.html

.NET API Reference for the ScaleOut Digital Twin Builder™:
https://static.scaleoutsoftware.com/docs/DigitalTwinDotNetAPI/html/11a0da96-8c30-4c07-b8a8-f1cc4a4d20
80.htm

Scaleout.Streaming.DigitalTwin.Core NuGet package:
https://www.nuget.org/packages/Scaleout.Streaming.DigitalTwin.Core/

Source code for .Net sample applications used in the presentation:
https://github.com/scaleoutsoftware/DigitalTwinDemos/tree/main/DotNet

Feel free sending me your feedback or questions on olegs@scaleoutsoftware.com

Useful links

Questions?

https://static.scaleoutsoftware.com/docs/digital_twin_user_guide/software_toolkit/dt_builder/dotnet_api/dotnet.html
https://static.scaleoutsoftware.com/docs/digital_twin_user_guide/software_toolkit/dt_builder/dotnet_api/dotnet.html
https://static.scaleoutsoftware.com/docs/DigitalTwinDotNetAPI/html/11a0da96-8c30-4c07-b8a8-f1cc4a4d2080.htm
https://static.scaleoutsoftware.com/docs/DigitalTwinDotNetAPI/html/11a0da96-8c30-4c07-b8a8-f1cc4a4d2080.htm
https://www.nuget.org/packages/Scaleout.Streaming.DigitalTwin.Core/
https://github.com/scaleoutsoftware/DigitalTwinDemos/tree/main/DotNet

Corporate Contact Tracing
Using Real-Time Digital Twins

Demonstration

October 27, 2020
Olivier Tritschler, oliviert@scaleoutsoftware.com

mailto:oliviert@scaleoutsoftware.com

Corporate Contact Tracing Demonstration

• Goals:
• Demonstrate a technique that could help companies get employees back to work safely.
• Demonstrate the use of real-time digital twins for timely notifications, improved situational

awareness, and fast development.

• Limitations of public contact tracing:
• Need for time-consuming, manual effort

• Privacy concerns and lack of cooperation

• Advantages for companies:
• Limited, known population

• Known clusters and interactions

• Ability to implement policies and procedures
(fewer privacy concerns)

• Ability to quickly react to strategic information

ScaleOut Software, Inc. 83

Work Groups Meetings

Business Travel

Demonstration Application (1)

• Consists of a mobile application
and cloud-based tracking service.

• Mobile app for employees:
• Notifies service of new and

recurring contacts outside of work
group.

• Notifies service of community
contacts during business travel
(flights, taxis, restaurants).

• Notifies service of a positive test for
COVID-19.

• Receives alert of possible exposure
and need for quarantine.

ScaleOut Software, Inc. 84

Demonstration Application (2)

• Cloud service tracks employees,
creates notifications, and provides
real-time aggregate statistics.

• A real-time digital twin instance
tracks each employee:

• Keeps list of contacts.

• Signals other digital twins when
employees tests positive.

• Digital twins traverse network of
contacts within seconds.

• Each signaled twin alerts its
employee.

• Twins maintain statistics for
aggregate analysis.

ScaleOut Software, Inc. 85

Aggregate Statistics

• Cloud service combines
statistics from all real-time
digital twins every few
seconds.

• Enables managers to
immediately spot clusters of
COVID exposures and take
action.

• Enables managers to assess
high risk areas e.g.,
(department types,
locations) and quickly
implement new policies.

ScaleOut Software, Inc. 86

Econos: A Simulated Company

• Load generator simulates a company to demonstrate the application’s capabilities.

• Works with live mobile app.

• Simulated company profile:
• 30K employees

• 5 department types

• Locations in 8 states

• 20-55 employees per
work group (1,366 groups)

• Load generator:
• Simulates interactions.

• Simulates employee notifications
of COVID-19 exposure.

• Runs faster than real-time for
demonstration purposes.

ScaleOut Software, Inc. 87

© ScaleOut Software, Inc. 88

Programming Exercise

ScaleOut Software, Inc. 89

Natural Gas Smart Meter Digital Twin Model

Programming Exercise:
1. Create a digital twin model to process telemetry from a gas sensor for tracking gas concentration

and alerting when maximum exposure has been reached.
2. Create messages which report the id, current ppm, and timestamp for a gas sensor.
3. Set an alert flag when either the gas level exceeds 50 ppm for more than 15 minutes or the level

spikes to 200 ppm.
4. (Bonus task): in addition to setting the flag add the code for sending a pipe shutdown control

message back to the meter device using the SendToDataSource method.

Natural gas typically consists of methane (or ethane),
propane and other elements. This gas is an extremely
fast-acting, toxic substance. The maximum allowable
short-term exposure level is 50 ppm for 15 minutes

Wrap-Up

Real-time digital twins are:

• Powerful: They enable context-tracking and introspection for every data source.

• Scalable: They can simultaneously track thousands (or even millions) of data
sources.

• Fast: They can respond to messages from data sources in milliseconds.

• Strategic: They enable immediate, real-time aggregate analytics that boost
situational awareness.

• Easy to Use: They are easy to develop in Java, C#, or JavaScript (and a rules
engine is coming soon).

The ScaleOut Digital Twin Streaming Service provides an integrated,
cloud-based platform for hosting real-time digital twins and
visualizing aggregate analytics.

© ScaleOut Software, Inc.

Thank you for joining us today.
We hope you enjoyed the session!

To learn more, visit us at:
 www.scaleoutsoftware.com
Documentation is posted at:

 https://www.scaleoutsoftware.com/scaleout-support/documentation
The slides and demos are posted at:

https://github.com/scaleoutsoftware/DigitalTwinDemos

ScaleOut Software, Inc. 91

http://www.scaleoutsoftware.com/
https://www.scaleoutsoftware.com/scaleout-support/documentation
https://github.com/scaleoutsoftware/DigitalTwinDemos

www.scaleoutsoftware.com

