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About the Speaker

Dr. William Bain, Founder & CEO of ScaleOut Software: 
• Email: wbain@scaleoutsoftware.com 
• Ph.D. in Electrical Engineering (Rice University, 1978) 
• Career focused on parallel computing – Bell Labs, Intel, Microsoft 

   
ScaleOut Software develops and markets In-Memory Data Grids, software for: 
• Scaling application performance with in-memory data storage 
• Providing operational intelligence on live data with in-memory computing 
• 15+ years in the market; 450+ customers, 12,000+ servers
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What Is In-Memory Computing?

Generally accepted characteristics: 
• Comprises both hardware & software 

techniques. 
• Hosts data sets in primary memory. 
• Distributes computing across many servers. 
• Employs data-parallel computations. 

Why use IMC? 
• Can quickly process “live,” fast-changing data. 
• Can analyze large data sets. 
• “Scaling out” is more scalable and cost-

effective than “scaling up”.
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In the Beginning

Caltech Cosmic Cube (1983) 
• Possibly the earliest in-memory computing system 
• Created by professors Geoffrey Fox and Charles 

Seitz 
• Targeted at solving scientific problems (high energy 

physics, astrophysics, chemistry, chip simulation) 
• 64 “nodes” with Intel 8086/8087 processors & 8MB 

total memory, hypercube interconnect, 3.2 MFLOPS 
• “One-tenth the power of the Cray 1 but 100X less 

expensive”
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The Era of Commercialization

Commercial Parallel Supercomputers 
• 1984: Industry pioneered by Justin Rattner, Intel 
• 1985: Intel iPSC1 

- 80286, 128 nodes, 512MB, hypercube 
• 1985: Ncube/10 

- Custom, 1024 nodes, 128MB, hypercube 
• 1993: IBM SP1 

- RS/6000, 512 nodes, 128GB, proprietary 
• 1993: Intel Paragon 

- I860, 4K nodes, 128GB, 2D mesh 
- 300 GFLOPS

Justin Rattner

Intel IPSCIPSC Node Board
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Explosion in New Applications

Parallel supercomputers spurred the creation 
of numerous new applications: 

• High energy physics and astrophysics 
• Computational fluid dynamics 
• Structural mechanics 
• Weather simulation 
• Climate modeling 
• Financial modeling 
• Distributed simulation
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The Challenge: Deliver High Performance

The Goal: Extract parallel speedup on a 
system with many processing nodes. 

• Applications have a combination of parallelizable code 
and sequential code. 

• Sequential code and communication overhead can 
limit overall performance. 

• First described by Gene Amdahl in 1967 (“Amdahl’s 
Law”) for speedup: S <= 1/(1-p), p = parallel fraction 

• Example: If 90% is parallel code, speedup cannot 
exceed 10X!
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Fast Interconnects Help

They boost throughput and lower communication latency. 

But proprietary networks can be expensive and hard to build.

4D hypercube 2D mesh with cut-through routing

Bill Dally, Caltech



Scale the workload to match the 
system’s capacity. 

• First observed by Cleve Moler in 1985  
while running LINPACK on the iPSC. 

• He initially could not get the LU Decomposition 
algorithm to scale. 

• Running the algorithm on a larger matrix hid 
overheads and extracted higher throughput. 

• Moler coined the term “embarrassingly parallel” 
to describe highly scalable algorithms with low 
communications overhead.
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The Solution: Scale the Workload

LINPACK throughput for increasing matrix sizes (Moler)



Scaling the workload maximizes throughput and keeps response times low. 
• Quantified by John Gustafson in 1988 (“Gustafson’s Law”): S = 1 – p + Np 
• Used by in-memory data grids for both distributed caching and parallel computing 
• Requires balancing resource usage: CPU, memory, network
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Scalable Speedup is Fundamental to IMC

Comparison 
of Amdahl to 
Gustafson 
speedup 
(Juurlink)
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Evolving IMC Architectures

IMC architectures have evolved to take advantage of new technologies.

Original  
supercomputer 
architecture 
(1980s-1990s) 
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Evolving IMC Architectures

IMC architectures have evolved to take advantage of new technologies.

Compute cluster with 
in-memory data grid on 
physical servers 
(1998-2001) 
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Evolving IMC Architectures

IMC architectures have evolved to take advantage of new technologies.

Compute cluster with 
in-memory data grid 
on virtual servers 
(2005) 
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Evolving IMC Architectures

IMC architectures have evolved to take advantage of new technologies.

Compute cluster with 
in-memory data grid in 
the cloud 
(2007) 
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Simplifying the Developer’s Task

In-Memory Data Grid (IMDG) provides 
important software abstractions. 

• Message passing is fast but challenging. 
• IMDGs were originally developed in 2001 for  

distributed caching as middleware software. 
• IMDG hides complexity: 

- Gives applications a global view of stored objects. 
- Incorporates transparent scaling & high availability. 

• IMDG can deliver scalable speedup to ensure fixed 
response times with growing workloads.

Cameron Purdy, 
Tangosol
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IMDGs Can Host Data-Parallel Computing

Object-oriented APIs enable data-parallel 
analytics on live data. 

• Example: parallel method invocation (PMI): 
- Run a user-defined method on all objects in a 

namespace. 
- Merge results and returns them to application. 

• Matches semantics of message passing OS in 
parallel supercomputers. 

• Operates on objects stored in the IMDG. 
• Provides scalable speedup; reduces network use.

IMDG



Compute Where the Data Lives

Run parallel algorithms in the IMDG – not on external servers. 
• External compute clusters have higher network overhead which lowers scalable speedup. 
• IMDGs have scalable CPU resources and can access data without network overhead.

IMDG

Financial services computation (stock back-testing)
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Specialized IMC Software for Big Data

Spark (2009) provides a powerful software platform 
for parallel processing of large data sets.  

• Offers data-parallel operators (e.g., Map,  
Reduce, Filter) in Scala and Java. 

• Uses specialized data sets (RDDs) to  
host in-memory data. 

• Designed for analyzing “big data” 

Compare to using an IMDG for “live” data: 
• IMDG manages fast-changing data in a key/value store. 
• Designed to provide “operational intelligence” in live systems

Matei Zaharia, UCB
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Scaling Streaming Analytics

The Challenge: Ensure scalable speedup for streaming applications. 
• Typical streaming architectures use a pipelined approach (Storm, Flink, Beam). 
• Pipelined streaming applications can be hard to design for transparent scaling. 
• They also can encounter network bottlenecks accessing contextual data.
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Using an IMDG for Streaming Analytics

The digital twin model helps ensure scalable speedup. 
• Digital twins map cleanly to an IMDG and track data sources using in-memory objects. 
• They enable transparent scaling and avoid data motion. 
• They also allow integrated, data-parallel analysis.

IMDG
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From Caching to Streaming Analytics

As IMDGs have evolved, scalable speedup drives design choices.

2005 2008 2017ScaleOut releases:
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Takeaways

• In-memory computing has a long, storied history. 
• The concept of scalable speedup drives 

performance and underlies key design choices. 
• Maintaining speedup requires balancing CPU, 

memory, and networking as technology shifts. 
• Live systems continue to grow and generate more 

data to manage and analyze. 
• In-memory computing serves as a key technology 

for extracting value from both live and big data.


