
Integrating Real-Time Stream Processing
and Data-Parallel Analytics Using Digital

Twins
William Bain, Founder & CEO

ScaleOut Software, Inc.
October 29, 2020

 2

About the Speaker

Dr. William Bain, Founder & CEO of ScaleOut Software:
• Email: wbain@scaleoutsoftware.com
• Ph.D. in Electrical Engineering (Rice University, 1978)
• Career focused on parallel computing – Bell Labs, Intel, Microsoft

ScaleOut Software develops and markets In-Memory Data Grids, software for:
• Scaling application performance with in-memory data storage
• Operational intelligence: analyzing live data in real time with in-memory computing
• 15+ years in the market; 450+ customers, 12,000+ servers

 3

Agenda

• Challenges for Stream Processing for Large Numbers of Data Sources
• Real-Time Digital Twin Software Model
• Target Applications & Examples
• Code Sample
• Using an In-Memory Data Grid (IMDG) to Host Real-Time Digital Twins
• The Role of Digital Twins in Aggregate Analytics
• Implementing Aggregate Analytics Using an IMDG
• Demo

Goals and Challenges

Goals:
• Track the state of many data sources.
• Predict future conditions & emerging issues.
• Respond and alert in real time.
• Maximize situational awareness.

Challenges:
• How to maintain state for each data source?
• How to scale to handle many data sources?
• How to perform aggregate analytics in real time?

A Smart Cities Application

Example: Fleet Telematics

Track a fleet of trucks
• Trucks have sensors that report to

dispatcher every minute.
• Telemetry includes position, speed, engine

parameters, cargo parameters.
• Streaming analytics determines:

- Emerging issues with vehicle and
cargo

- Delays vs. route and schedule
- Lost, fatigued, or timed-out drivers
- Overall fleet performance & issues

 6

Challenges for Streaming Analytics

Challenges for tracking large numbers of data sources:
• Popular software platforms (Flink, Storm, Beam) are pipeline-oriented:

- Push all messages through a single pipeline or directed graph of processing stages.

• Creates complexity challenges: correlating messages by data source, partitioning work.
• Creates performance challenges: achieving scalable speedup, avoiding network overhead.

 7

Managing Contextual Data

How to track dynamic state information for each data source?
• Pipelined streaming platforms typically do not maintain integrated, in-memory

contextual information for each data source.
• This can create network bottlenecks when accessing external stores:

Bottleneck

 8

The Impact of Network Bottlenecks

Network bottlenecks can limit throughput scaling:
• Accessing contextual data from an external store creates delays in stream processing.

IMDG

Example of the Effect of Network Bottlenecks

Stream-Processing Servers

 9

Ad Hoc Techniques

Applications often track data sources by combining cloud services:
• Ad hoc techniques typically use a front-end web service, application servers, database

and/or blob stores, offline analytics, and visualization.
• This requires several skills, can introduce bottlenecks, and uses offline aggregate

analytics.

 10

Limitations of Batch Aggregate Analytics

Applications need to maximize overall situational awareness:
• This requires immediately aggregating contextual state information about data sources.
• Pushing data to a data lake for offline processing by a “big data” platform (e.g., Spark)

creates delays (minutes or hours) that impact situational awareness.

Real-Time Digital Twins

A new software technique for tracking large numbers of data sources:
• Focus on state tracking by maintaining dynamic state information for each data source.
• Automatically correlate telemetry from each device or data source for processing.
• Provide a software framework for hosting application logic (e.g., rules, ML).

IMDG

Anatomy of a Real-Time Digital Twin

A real-time digital twin model describes how to process incoming messages
from a specific type of data source:

• State object defines properties of the data source to be tracked (one instance per data source).
• ProcessMessages method implements application-specific code that analyzes incoming

messages using the state object and then responds, commands, or alerts as necessary.

History and Other Uses of Digital Twins

Digital twins are used in multiple contexts:
• Originally described by Michael Grieves for product lifecycle management.
• Also used to describe device parameters or hierarchical relationships:

• AWS device shadow: cloud-based repository for per-device state information
• Azure IoT device twin: JSON document that stores per-device state information
• Azure digital twin: spatial graph of spaces, devices, and people for modeling

relationships in context
• Real-time digital twins focus

on streaming analytics.
A digital twin may be used for simulation, as a kind

of prototype to understand expected behavior,
existing before there is a physical twin. It can also
capture real-world behavior so that, for example,

analytics and learning can be performed. …

Definition from the Digital Twin Consortium

Advantages of Real-Time Digital Twins

Real-time digital twins enable tracking of large number of data sources:
• Provide a simple, flexible software model for encapsulating application code (e.g.,

predictive analytics, rules, ML). They avoid the need for message correlation by data source.
• Enable deep introspection with state tracking for each data source.
• Enable fast responses, commands, and alerts by avoiding network delays to access state

data.
• Transparently scale message

handling using an IMDG.
• Provide a basis for real-time

aggregate analytics. Streaming Service

Many Target Applications

Real-time digital twins assist in “real time intelligent monitoring” to
maximize situational awareness for live systems:

• IoT and smart cities
• Fleet telematics & logistics
• Contact tracing
• Security & disaster recovery
• Health-device tracking
• Ecommerce recommendations
• Financial services (e.g., fraud

detection)

Example: Contact Tracing for Companies

Real-time digital twins can track employee contacts within a company to
quickly notify employees exposed to COVID-19:

• Public contact tracing has numerous
obstacles to adoption (e.g., privacy).

• Companies need fast notifications.
• They can take advantage of:

• Known clusters and interactions
• Ability to implement policies
• Ability to quickly react to evolving

situations and control exposures.

Work Groups Meetings

Business Travel

Using Digital Twins for Contact Tracing

A real-time digital twin instance can track each employee:
• Keeps list of contacts notified by

employee using mobile app.
• Signals other digital twins when

employee notifies that tests positive.
• Digital twins traverse network of

contacts within milliseconds.
• Each signaled digital twin alerts its

employee using mobile app.
• Digital twins maintain statistics for

aggregate analysis.

Benefits of Aggregate Analytics

Aggregate analytics help identify “micro-clusters” of COVID-19
exposures as they emerge:

• This enables managers to quickly isolate exposed employees and implement policies.
• For example, they can identify a new outbreak at a site and then determine department(s).

Example: Security Tracking for a Power Grid

Real-time digital twins can track nodes is a large power grid and detect
intrusion points or emerging problems:

• Can introspect on intrusion events to
predict likelihood of an attack.

• Can detect issues (e.g., overheating
transformer) to predict likelihood of fire.

• Can create derived state describing the
results of introspection (e.g., alert level).

• Aggregate analytics can give managers
data needed for a strategic response.

Implementing a Digital Twin Model

Application developer creates a class to represent the state object and
implements the ProcessMessages method:

• The platform correlates messages by source and runs the ProcessMessages method.
• The method accesses context from the

state object and updates the object as
needed.

• The method sends replies to the data
source and send alerts as necessary.

• The streaming platform can access the
state object for aggregate analytics.

Sample Code: State Object Definition

public class StatusTracker extends DigitalTwinBase {
 // State variables
 public String node_type;
 public String node_condition;
 public String region;
 public double longitude;
 public double latitude;
 // Derived state variables
 public int alert_level;
 public int minorIncidentCount;
 public int moderateIncidentCount;
 public int falseIncidentCount;
 public int severeIncidentCount;
 public int totalIncidents;
 public int totalResolvedIncidents;
 public boolean experiencingIncident;
 // Dynamic incident report list
 public List<IncidentReport> incidentList;}

Sample Code: ProcessMessages Method
public ProcessingResult processMessages(ProcessingContext processingContext, StatusTracker
digitalTwin,
 Iterable<StatusTrackerMessage> messages) throws Exception {
 // Iterate through the incoming messages:
 for(StatusTrackerMessage msg : messages) {
 // if the message indicates a moderate incident and this tracker has never had a severe
 // incident while the heuristic false incident ratio is greater than 50%, boost the alert
level:
 if(msg.moderateIncident() &&
 digitalTwin.getSevereIncidentCount() == 0 &&
 digitalTwin.getModerateIncidentCount() > 0 &&
 ((double)(digitalTwin.getFalseIncidentCount()/
 digitalTwin.getModerateIncidentCount()) >= 0.5)) {

 digitalTwin.setAlertLevel(Constants.MODERATE+3);
digitalTwin.incrementModerateEventCount();
digitalTwin.setStatusTrackerCondition(msg.getNodeCondition());

 }
 // ... [additional rules]
 }
 return ProcessingResult.UpdateDigitalTwin;}

Running Real-Time Digital Twins on an IMDG

Real-time digital twins can be mapped to in-memory objects stored in an
in-memory data grid (IMDG):

• The IMDG delivers messages to the servers on which the instances are hosted.

Data-parallel analysis

 24

What Is an In-Memory Data Grid?

In-Memory Data Grid (IMDG) provides a
scalable software platform for in-memory
data storage and data-parallel computing.

• Typically stores object-oriented data as key-value
pairs distributed across a cluster of servers.

• Gives applications a global view of stored objects.
• Provides transparent scaling & high availability.
• Can include APIs for data-parallel computing.
• Takes advantage of multiple servers to provide high

throughput and fast access times.

How an IMDG Runs a Digital Twin Model

IMDG uses a scalable software
architecture for message delivery,
object storage and message
processing:

• Each server hosts three processes.
• Data grid’s process hosts objects.
• Worker grid’s process runs

message-processing code.
• Connector grid’s process delivers

messages.
In-Memory Data Grid

Scale

Message Hub

Advantages of Using an IMDG

IMDG enables fast message handling, scalable throughput, and high
availability:

• Messages are processed
where the instance objects are
hosted to reduce data motion.

• The IMDG ensures reliable
message delivery from the
message hub.

• The IMDG transparently scales
by adding servers to host more
instances.

IMDG Reduces Network Bottlenecks

IMDG runs message-processing code on the host where the instance
object is located:

• This eliminates data motion to
retrieve the state object.

• This reduces network bottlenecks
and helps to maximize throughput
scaling.

• A network transfer is still required
to replicate updates.

Benefits of Real-Time Aggregate Analytics

Real-time aggregate analytics boost situational awareness:
• Quickly pinpoint data sources

which need attention.
• Allow managers to identify

patterns and create strategies.
• For example, they can detect:

• Multiple points of intrusion
• Unusual shortfall of supplies

in a region
• Reaction to an ecommerce

flash sale

Example of Aggregate Analytics

Aggregate analytics can help identify and react to emerging logistics
issues. For example:

• Hospitals send periodic messages
describing shortfall in supplies to
their real-time digital twins.

• Real-time digital twins maintain
curated shortfall data.

• Aggregate analytics immediately
signals regions with highest needs.

• Query identifies hospitals with highest
priority needs.

Implementing Aggregate Analytics

Real-time digital twins create a domain for aggregate analytics:
• Streaming pipelines and ad hoc systems must explicitly deliver data to a data lake for

aggregate analysis.
• Digital twin state objects provide an automatic domain for aggregate analysis.
• Example: health device tracking

• State objects collect statistics
for each user.

• Data-parallel analysis generates
aggregate statistics.

• These results can provide feedback
to influence user behavior.

Integrating Aggregate Analytics with RTDTs

IMDG integrates MapReduce with digital
twin state objects:

• Source data set is a selected property held in
each digital twin instance’s state object.

• Groups are defined by another selected state
property (e.g., location, device type).

• The MapReduce operation extracts these
properties concurrently with message
processing.

• Aggregated results can be produced and
refreshed every few seconds.

MapReduce for Aggregate Analytics

MapReduce runs in parallel to
aggregate data in groups:

• Mappers partition input data into groups.
• Reducers combine data for each group

using an aggregation operator.
• Mappers and reducers can run in

parallel on each server using multiple
threads.

• Results can then be merged and
combined across multiple hosts.

Running MapReduce in an IMDG

MapReduce can be computed in a separate worker process on each
IMDG server:

• Worker process could be a JVM
or .NET runtime where the digital
twin model runs.

• This provides flexibility in the
MapReduce implementation.

• However, it requires objects to be
transferred across an IPC
connection for deserialization
and analysis.

Running MapReduce in an IMDG (2)

MapReduce can be computed within the IMDG service processes:
• This requires that digital twin instance objects use a known serialization format (e.g.,

JSON).
• It eliminates data motion except for merging results across servers.
• This provides the best throughput and reduces completion time.

Demo: Creating a MapReduce Widget

Demo shows how a visual widget can be created to perform continuous
aggregate analytics on state information held in digital twin instances.

Widget Displaying Aggregate Analytics

Takeaways

• Real time digital twins enable streaming
analytics to track large numbers of data
sources.

• They offer several advantages over pipelined
techniques, including context-based
introspection and simplified design.

• They also provide a domain for aggregate
analytics using properties in their state objects.

• IMDGs can host real-time digital twins, transparently scale
message processing, and implement real-time aggregate analytics.

• These capabilities help managers maximize situational awareness.

