

Continuous Intelligence Apps That Always Have The Answer

swim

Simon Crosby, CTO

swim.ai

simon@swim.ai

Palo Alto, CA

Continuous Intelligence

Always have the answer

Analyze, learn & predict on-the-fly

Data drives computation

5L

Benefits

Get answers a million times faster...

Use 90% less infrastructure

Apps are easy to develop and operate

Do data science on live data

000

-

ns

Execute an instruction1 nsRead 1MB from disk20,000,000 nsPing US-W to US-E80,000,000 ns

Moore's Law - The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Databases...

- Can't find meaning in data or build models
- Don't track fluid real-world relationships
- Don't analyze, learn or predict

They are poorly suited to strathing data

- Transactions & ACID provides are too heavyweight
- What's the '*truth' and useful?*
- '*Time*' is fundational, not just for ordering
- Relation Office fluid, mathematical & geospatial
- A polyment can cause cascading re-evaluations

Use real-world context to find meaning

Use languages & ops tools everyone knows

swim: **In**for Things

- Creates a stateful, concurrent Web Agent for each data source, that continuously and statefully analyzes data from its real-world twin
- Each dynamically <u>links</u> to related agents, creating a fluid inmemory graph that tracks complex relationships
 - Containment, proximity "neighbor" or "is approaching"
 - Computed "correlated to" or "predicted to be within"
- Linked Agents can use each others' state to continuously analyze, learn and predict
- And stream their insights to apps, real-time UIs etc

Continuously Analyze, Learn & Predict

Un-supervised Learning

Key Concepts: Agents, Lanes, and Links

- Universally addressable
- Stateful and persistent
- Cache coherent
 streaming APIs
- General purpose
 compute processes
- Low overhead (<1kB/agent)
- Self-sufficient
 distributed runtime

Analogy

	Agent	Lane	Link
OOP	Object	Member	Reference
REST	Endpoint	Method	Request
Database	Row	Column	Relation
Message Broker	Namespace	Торіс	Subscription
Actor Model	Actor	Mailbox	Messages
Operating System	Process	File	File Handle

swim

Architecture: A World Wide Web of Agents

swim

Easy for Real Humans

Developer builds an objectoriented Java application & 600 Swim uses streaming data to build a deploys with standard tools stateful graph of concurrent Web Agents – one per source Web Agents *link* to represent relationships and share state They continuously analyze, learn & predict from their state and the states of linked Agents ... and stream their analysis and predictions in real-time over their links to deliver continuously updated insights to UIs, data scientists & applications

swim

Copyright © 2019 Swim.Al inc

Streaming Analysis, Learning & Prediction

Swim Continuum: platform for continuous intelligence

> Distributed application runtime for real-time, data-driven computing

Continuous Intelligence Analyze, learn & predict on-the-fly -O- Always have the answer React in real-time Get answers a million times faster... Use 90% less infrastructure O k k Apps are easy to develop and run

Do data science on live data

- 2000 readers and ~10,000 reads / sec
- Millions of tagged assets
- Each tag gets "seen" by multiple readers
- Tag read database of terabytes
- Computationally intense to process

- **RSSI:** Received Signal Strength Indicator
- Signal strength variation means we need to "learn" the RF power distribution

Then use **DeLaunay Triangulation** to compute position of each tag